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Abstract

We consider a discrete-time model where multiple queues, each with its own ex-

ogenous arrival process, are served by a server whose capacity varies randomly and

asynchronously with respect to di�erent queues. This model is primarily motivated

by the problem of eÆcient scheduling of transmissions of multiple data ows sharing a

wireless channel.

We address the following problem of controlling large deviations of the queues: �nd

a scheduling rule, which is optimal in the sense of maximizing

min
i

�
lim
n!1

�1

n
logP (aiQi > n)

�
; (0.1)

where Qi is the length of the i-th queue in a stationary regime, and ai > 0 are pa-

rameters. Thus, we seek to maximize the minimum of the exponential decay rates of

the tails of distributions of weighted queue lengths aiQi. We give a characterization of

the upper bound on (0.1) under any scheduling rule, and of the lower bound on (0.1)

under the exponential (EXP) rule. We prove that the two bounds match, thus proving

optimality of the EXP rule. The EXP rule is very parsimonious in that it does not
require any \pre-computation" of its parameters, and uses only current state of the

queues and of the server.

The EXP rule is not invariant with respect to scaling of the queues, which compli-

cates its analysis in the large deviations regime. To overcome this, we introduce and

prove a re�ned sample path large deviations principle, or re�ned Mogulskii theorem,

which is of independent interest.
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1 Introduction

The model we consider in this paper is motivated primarily by the problem of scheduling
transmissions of multiple data users (ows) sharing the same wireless channel (server). As
an example, one can think of the following scenario: a wireless access point, or base station,
receives data traÆc ows destined to several di�erent mobile users, and needs to schedule
data transmissions to the users over a shared wireless channel, so that the channel is used
eÆciently. (Cf. [3, 1, 18] for a more detailed discussion of this scenario.) The distinctive fea-
ture of this model, which separates it from more \conventional" queueing models, is the fact
that the capacity (service rate) of the channel varies with time randomly and asynchronously
with respect to di�erent users.

A little more precisely (but still informally), the model is as follows. There are N
exogenous input (traÆc) ows, which are queued in separate (in�nite capacity) bu�ers,
before they can be served by a channel. Time is divided into slots. The channel can serve
only one of the ows in one slot. The \aggregate state" of the channel varies randomly
from slot to slot. If the channel state in a given slot is m and ow i is chosen for service
in this slot, the service rate is �mi � 0, i.e., �mi customers (bits of data) of ow i are served
(transmitted) and leave the system. This and related models received a signi�cant amount of
attention in recent years (cf. [14] for an overview). It is well known that eÆcient scheduling
rules cannot be \channel state oblivious." However, it is also known that large classes of
rather \parsimonious" algorithms, making scheduling decisions based only on the current
channel state and current queue lengths (and/or current head-of-the-line queueing delays)
information can in fact achieve certain notions of eÆciency. For example, MaxWeight-type
algorithms (cf. [2] and references therein) and the Exponential (EXP) algorithm [10] are
throughput optimal in the sense that they ensure stochastic stability of the queues as long as
such is feasible at all, under any rule. Also, both MaxWeight and EXP rules exhibit optimal
behavior under heavy traÆc conditions (see [14, 11]).

In this paper we would like to address the following issue. Suppose we want to �nd
a scheduling algorithm (rule), or queueing discipline, under which the following Quality-of-
Service condition is satis�ed:

PfQi > Big � Æi ; i = 1; : : : ; N ; (1.1)

where Qi is the steady state queue length for ow i, Bi > 0 is a prede�ned threshold, and
Æi is the maximum acceptable probability of queue length exceeding the threshold. (This
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problem appears in a variety of applications, cf. [4, 12, 13] for a further discussion and
reviews.)

If the thresholds Bi are \large," then conditions (1.1) can be \approximately" replaced
by the following asymptotic - \tail" - conditions

�(Qi) � ai ; i = 1; : : : ; N ; (1.2)

where we use the notation

�(X)
:
= lim

n!1
�
1

n
logP (X > n) (1.3)

for the exponential decay rate of the tail of the distribution of random variable X (assuming
the above limit exists), and

ai = � log(Æi)=Bi:

This is precisely what we will do in this paper. We consider the problem of �nding a
scheduling rule such that the tail conditions (1.2) are satis�ed for some �xed set of positive
parameters ai.

This problem in turn is equivalent to solving the following optimization problem

maximize min
i=1;:::;N

a�1
i �(Qi) ; (1.4)

where the maximization is over all scheduling disciplines. Indeed, a discipline satisfying (1.2)
exists if and only if the maximum in (1.4) is 1 or greater (and the maximum is attained, to
be precise). Finally, if we denote by

Q�
:
= max

i
aiQi

the maximal weighted queue length, and observe that mini a
�1
i �(Qi) = �(Q�), we see that

the problem (1.4) is equivalent to

maximize �(Q�) : (1.5)

To summarize, we want to �nd a scheduling rule solving problem (1.5), i.e. a rule maximizing
the exponential decay rate of the tail of the distribution of the maximal weighted queue length
Q�, with some �xed \weights" ai > 0.

In the case when the channel is not time-varying, i.e., there is only one channel state
and therefore the (potential) service rates �i are constant, our model essentially �ts into the
framework of [12], where, in particular, it is proved that an extremely simple rule always
choosing for service the queue maximizing aiQi is an optimal solution to problem (1.4). (This
result was extended in [13] to a queueing network setting.) However, for our model, where
the channel is time-varying, the above simple rule cannot possibly be optimal for problem
(1.4), because it ignores the current state of the channel; moreover, except for degenerate
cases, this rule is not even throughput-optimal - it can make queues unstable in cases when
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stability (under a di�erent rule) is feasible. The main goal of this paper is to establish
optimality of the EXP rule for the problem (1.4). The EXP rule is de�ned as follows:

When the channel is in state m, serve ow maximizing �mi exp

 
aiQi

1 +Q
�

!
; (1.6)

where Q
:
= (1=N)

P
i aiQi, and � 2 (0; 1) is a �xed parameter.

Problems like (1.4) are naturally approached using Large Deviations (LD) theory tech-
niques. It is well known in LD theory that, roughly speaking, the value of �(Q�) under a
given scheduling rule is determined by a \most likely path" for the process Q�(t) to reach
level n, starting from 0. (See the de�nition of �(�) in (1.3).) Or, equivalently, this is a most
likely path for a \uid-scaled" process (1=n)Q�(nt) to reach level 1. In turn, the likelihoods
of such rescaled paths are determined by a sample path large deviations principle (Mogul-
skii theorem) for the sequence of uid-scaled \driving processes" - namely, input ow and
channel state processes, as n ! 1. (If the value of the corresponding LD rate function of
a path - or path \cost" - is c, then the \probability" of the path is \approximately" e�cn,
when n is large.)

One of the diÆculties in the LD analysis of the EXP rule is that the \standard" sample
path large deviations principle (SP-LDP) is not suÆcient for \keeping track" of the path
costs. The basic reason for this is that EXP rule is not asymptotically invariant with respect
to scaling of queue lengths. Informally, an \asymptotically scaling-invariant" rule is such
that, when queue lengths are large, a scaling of all queue lengths by the same factor at
any given time, (roughly speaking) does not change the scheduling choice. (An example of
asymptotically scaling-invariant rule is a MaxWeight-type algorithm, choosing for service a
ow i maximizing ciQ

�
i �

m
i , where � and all ci are arbitrary positive parameters. A slightly

more general rule, maximizing [ciQ
�
i + di]�

m
i , where di's are additional parameters, is also

asymptotically scaling-invariant.)

Fluid scaling is the \relevant" one to study the dynamics of the queue lengths under
an asymptotically scaling-invariant rule in an (unscaled) time interval of the order of O(n)
(because rescaling of queue lengths by 1=n, for any n, \preserves the information" on which
scheduling choices are made), and a standard SP-LDP gives the likelihood of trajectories
under this scaling. In contrast, the EXP rule is not asymptotically scaling-invariant, as
seen from the expression in (1.6). Even if ultimately we are interested in the dynamics of
the queue lengths under EXP rule over an interval of the order O(n), the \relevant" time
and space scale which determines such dynamics is of the order O(n�). (The value of Q
is \typically" O(n). Therefore, the di�erences of the order O(n�) between weighted queue
lengths aiQi result in the order O(1) ratios of the exponent terms in (1.6) for di�erent
ows i. But, these ratios are what determine the scheduling choices.) Consequently, we
need the likelihoods of (unscaled) trajectories over order O(n�) time intervals; uid scaling,
however, does not \preserve" this information. To resolve this diÆculty, we introduce and
prove what can be called a \re�ned" SP-LDP, or a re�ned Mogulskii theorem (RMT). Using
RMT we introduce the notions of a generalized uid sample path (GFSP) and its re�ned
cost. (Roughly speaking, the re�ned cost of a GFSP \takes into account" the behavior of
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(unscaled) process trajectories on time scales that are \�ner" than O(n).) We show that
the likelihood of building large value of Q� under EXP rule can be given in terms of GFSP
re�ned costs.

Our RMT result (Theorem 7.1) and the notions of GFSP and its re�ned cost are generic
and are of independent interest. In particular, as the above discussion demonstrates, they
are instrumental in LD analysis of scheduling rules that are not scaling-invariant.

The main results of the paper are as follows. We prove the upper bound �(Q�) � J�,
which holds under any scheduling rule, where J� is de�ned in terms of lowest cost \simple"
(linear) paths to raise Q�. The proof of this upper bound involves only a standard Mogulskii
theorem for the sequence of uid-scaled input ow and channel state processes. We introduce
and prove a re�ned Mogulskii theorem, and introduce the related notion of GFSP. We then
give the lower bound �(Q�) � J��, which holds for the EXP rule, where J�� is de�ned in
terms of the lowest re�ned cost of a GFSP to raise Q�. Finally, for the EXP rule, we prove
that the lower and upper bounds on �(Q�) match, that is �(Q�) = J�� = J�, thus proving
that the EXP rule is indeed an optimal solution to problem (1.4).

Previous work on the large deviations regime for queues served by a time-varying server
includes [19], which contains results for a MaxWeight-type rule (maximizingQi�

m
i ) in a sym-

metric model. (\Symmetric" means: all input ows have equal rate and are non-random;
channel state m = (m1; : : : ; mN) is a direct product of N independent and identically dis-
tributed channel states mi of the individual ows.) The optimality problem (1.4) is not
addressed in [19], and the analysis relies in an essential way on the symmetry assumptions.

The rest of the paper is organized as follows. In Section 2 we introduce basic notations,
de�nitions, conventions used in the paper. The system model, formal de�nition of the EXP
rule, and our main results (Theorem 3.2) characterizing the bounds on �(Q�) under an
arbitrary rule and EXP rule, and proving EXP optimality, are given in Section 3. The
necessary de�nitions of a sequence of scaled processes and a standard SP-LDP (Mogulskii
theorem) are presented in Sections 4 and 5, respectively. In Section 6 we prove the bound
�(Q�) � J� (Theorem 3.2(i)) for any scheduling discipline. A re�ned Mogulskii theorem is
formulated and proved in Section 7. Section 8 contains the de�nition of a GFSP and proof
of the bound �(Q�) � J�� (Theorem 3.2(ii)) under EXP rule. A part of Theorem 3.2(ii)
proof is postponed until Section 10, because it requires the notion of local uid sample path
(LFSP), developed in Section 9; LFSPs describe the dynamics of the queue lengths in time
intervals of the order O(n�) and serve as a key tool for deriving the bound J�� under EXP
rule. Finally, in Sections 11 and 12, using again the LFSP construction, we prove that, in
fact, J�� = J� and therefore EXP rule is optimal (Theorem 3.2(iii)).

2 Basic notation and de�nitions

We denote by IR, IR+ and IR++ the sets of real, real non-negative and real positive numbers,
respectively. The corresponding k-times product spaces are IRk, IRk

+ and IRk
++. For vectors
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a; b 2 IRk, the scalar product is a � b
:
=
P

i aibi, the norm of b is kbk
:
= (b � b)1=2; we also use

non-standard notations eb
:
= (eb1 ; : : : ; ebk) and a� b

:
= (a1b1; : : : ; akbk).

We denote minimum and maximum of two real numbers �1 and �2 by �1 ^ �2 and �1 _
�2, respectively; and by b�c and d�e the integer part and the ceiling of a real number �,
respectively. The in�mum of a function over an empty set is interpreted as +1.

Let D be the space of RCLL functions (i.e. right continuous functions with left limits)
de�ned on [0;1) and taking values in IR. Unless otherwise speci�ed, we assume D is endowed
with the topology of uniform convergence on compact sets (u.o.c.). As a measurable space,
we always assume that D is endowed with the �-algebra generated by the cylinder sets. By
A we denote the subset of absolutely continuous functions in D, and by A0 � A the subset
of functions h(�) with h(0) = 0. For any function space S, and any 0 � c < d, �dcS denotes
the space of functions in S with the domain \truncated" to [c; d]. The subspaces and spaces
with truncated domains inherit the topology and �-algebra of D. Given any space S, we
assume that the k times product space Sk has the product topology and product �-algebra
de�ned in the natural way.

For any s � 0 and h = (h1; : : : ; hk) 2 D
k [or �dcD

k]], we de�ne the norm

jjhjjs
:
= max

i=1;:::;k
sup
t�s

jhi(s)j:

Thus the u.o.c. convergence in Dk [or �dcD
k] is equivalent to convergence in norm jj � jjs for

all s > 0. We de�ne the scaling operator �c; c > 0; for h 2 Dk as follows:

(�ch)(t)
:
=

1

c
h(ct) : (2.1)

For a function h 2 D, we de�ne the domain truncation operator �dc , for 0 � c < d, in
the natural way:

�dc h 2 �
d
cD and (�dch)(t) = h(t); c � t � d:

For h 2 D, and 0 � c < d, we also de�ne operator ��dc (which is a simultaneous domain
truncation and shift, as well as recentering) as follows:

��dc h 2 �
d�c
0 D and (��dch)(t) = h(c+ t)� h(c):

For a set of functions, operators �dc and ��dc are applied componentwise.

We will write simply 0 for the zero element of IRk and for zero functions taking values
in Dk [or �dcD

k].

Let 

:
= (
;F ; P ) be a probability space. We assume that 
 is large enough to support

all the independent random processes that we use in the paper. Typically, we follow the
convention of using bold font for stochastic processes and Roman font for deterministic
functions, including realizations of random processes. Given any subset B of a topological
space, we use �B and BÆ to denote its closure and interior respectively. The following is the
standard de�nition of a large deviation principle [6, p.5].
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De�nition 2.1 (LDP) Let X be a topological space and B a �-algebra on X (which is not
necessarily the Borel �-algebra). A sequence of random variables fXng on 
 taking values
in X is said to satisfy the LDP with good rate function I if for all B 2 B,

lim sup
n!1

1

n
logP (Xn 2 B) � � inf

x2 �B
I(x);

and

lim inf
n!1

1

n
logP (Xn 2 B) � � inf

x2BÆ

I(x);

where I : X ! IR+ [ f1g is a function with compact level sets.

3 The model and main results

3.1 The model

The system has N input ows, consisting of discrete customers, which need to be served by
a single channel (or server). We will denote by N both the set of ows f1; : : : ; Ng and its
cardinality. Each ow has its own queue where customers wait for service. (Sometimes, we
use terms \ow" and \queue" interchangeably.)

The system operates in discrete time. A time interval [t; t + 1), with t = 0; 1; 2; : : :, we
will call the time slot t. In each time slot the channel can be in one out of the �nite set
M = f1; : : : ;Mg of channel states, and it can pick one of the ows for service. If in a given
time slot the channel is in state m 2M and ow i 2 N is chosen for service, then the integer
number �mi � 0 of customers are served from the corresponding queue i (or the entire queue
i content, if it is less than �mi ). Thus, associated with each channel state m 2 M is the �xed
vector of service rates (�m1 ; : : : ; �

m
N).

The channel state m(t) in each time slot t is drawn independently according to some
probability distribution � = (�1; : : : ; �M). Without loss of generality, we can and will assume
that �m > 0 for all states m.

Denote by Ai(t) the number of type i customers that arrived in time slot t = 1; 2; : : :.
We will adopt a convention that the customers arriving in slot t are immediately available
for service in this slot. We will assume that all arrival processes are mutually independent,
each sequence Ai(t); t = 1; 2; : : :, is i.i.d., with �nite exponential moments

Ee�Ai(1) <1; 8� � 0; 8i: (3.1)

Let us denote by ��i
:
= EAi(1); i = 1; : : : ; N , the mean arrival rate for ow i, and assume

that ��i > 0 for all i.

The random process describing the behavior of the system is

Q(t) = (Qi(t); i = 1; : : : ; N); t = 0; 1; 2; : : :
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where Qi(t) is the type i queue length at time t.

For some (but not all) results in the paper we will need the following additional assump-
tion:

Ai(1) < C <1; 8i: (3.2)

3.2 Scheduling Rules. Stability

A scheduling rule, or a queueing discipline, is a rule that determines which ow to pick for
service in a given time slot t, depending in general on the entire history of the process up to
time t.

If we denote by Di(t), the number of type i customers served in the time slot t� 1, then
according to our conventions, for each t = 1; 2; : : :,

Qi(t) = Qi(t� 1)�Di(t) + Ai(t); 8i: (3.3)

Note that Di(t) = minfQi(t� 1); �m(t�1)
i g for the ow i chosen for service in slot t� 1, and

Di(t) = 0 for all other ows (because in our model only one ow can be served in a slot).

If a scheduling rule is such that it picks a ow to be served in a given time slot t depending
only on the current queue length vector Q(t) and current channel state m(t), then clearly
(Q(t); m(t)); t = 0; 1; 2; : : :, is a Markov chain with countable state space. (The EXP rule
de�ned later is of this type.) We say that the system under a given scheduling rule of this
type is stable if the Markov chain has a �nite subset of states which is reachable from any
other state with probability 1, and each state within the subset is positive recurrent. Stability
implies existence of a stationary probability distribution. (If the Markov chain happens to
be irreducible, stability is equivalent to ergodicity, and the stationary distribution is unique.)

Suppose a stochastic matrix � = (�mi; m 2M; i = 1; : : : ; N) is �xed, which means that
�mi � 0 for all m and i, and

P
i �mi = 1 for every m. Let � be the set of all such stochastic

matrices �. Given � 2 � we de�ne the vector v = (v1; : : : ; vN) = v(�) as follows:

vi =
X

�m�mi�
m
i ; i 2 N: (3.4)

If each component �mi of matrix � is interpreted as a \long-term" average fraction of time
slots when ow i is chosen for service, out of those slots when the channel state is m, then
v(�) is simply the vector of average service rates which will be \given" to the ows. The set

V
:
= fw 2 RN

+ j w � v(�) for some � 2 �g

is called system (service) rate region.

It is well known (cf. [14] and references therein) that the condition �� 2 V is necessary
for stability. Throughout this paper we assume a slightly stronger condition:

�� < v� for some v� 2 V: (3.5)
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3.3 Exponential Scheduling Rule

Let a set of positive parameters a1; : : : ; aN and � 2 (0; 1) be �xed. The following scheduling
rule is called Exponential [10], or EXP: it chooses for service in time slot t a single queue

i 2 i(Q(t)) = argmax
i
ci �i(t) exp

 
aiQi(t)

c+ [Q(t)]�

!
; (3.6)

where �i(t) � �m(t)
i , Q(t)

:
= (1=N)

P
i aiQi(t), and c; c1; : : : ; cN , are some additional positive

parameters. (Ties are broken in an arbitrary, but a priori �xed way, for example in favor of
the smallest index within the set i(Q(t)).)

Proposition 3.1 [10] If condition (3.5) holds, the system under the EXP rule is stable.

Proposition 3.1 says that the EXP rule is throughput optimal in the sense that it makes
the system stable as long as, essentially, stability is feasible at all.

In the rest of the paper, to simplify exposition, we assume that parameters c; c1; : : : ; cN
are all equal to 1. (Setting these parameters to arbitrary values does not a�ect main results,
and it does not a�ect the proofs in any essential way.)

3.4 Main results

The function Q�(t)
:
= maxi aiQi(t) of the state Q(t) will be called maximal weighted queue

length. (The corresponding random processes are denoted by Q(t) and Q�(t), t = 0; 1; 2; : : :.)
It will be convenient to extend the domain of Q(�) and Q�(�) (as well as other functions
introduced later in the paper), which are naturally de�ned in discrete time, to continuous
time t by adopting the convention that the functions are constant within each time slot
[k; k + 1), where k is integer. Now we are in position to formulate our main result.

Theorem 3.2 Suppose condition (3.5) is satis�ed. Then, the following holds.

(i) There exists T 0 2 (0;1) such that for any scheduling rule and any t > T 0, we have
the following lower bound:

lim inf
n!1

1

n
logP

�
1

n
Q�(nt) > 1

�
� �J� ; (3.7)

where J� > 0 is de�ned and explained later in Section 6. [Additional condition (3.2) is not
required.]

(ii) Suppose additional condition (3.2) holds. Consider the system under the EXP
scheduling rule and the Markov chain Q(�) being in a stationary regime (which exists by
Proposition 3.1). Then, we have the following upper bound:

lim sup
n!1

1

n
logP

�
1

n
Q�(0) > 1

�
� �J�� ; (3.8)
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where J��, 0 � J�� � J�, is de�ned and explained later in Section 8 (see (8.7)).

(iii) Moreover, under the conditions of (ii),

J�� = J� (3.9)

and, therefore, under the EXP rule

lim
n!1

1

n
logP

�
1

n
Q�(0) > 1

�
= �J� : (3.10)

Theorem 3.2(iii) shows that the EXP rule is optimal in that it maximizes the exponential
decay rate of the stationary distribution of the maximal weighted queue length Q�(�). We
remark that the upper bound characterization given in Theorem 3.2(ii) is quite generic and
can be used for other non-scaling-invariant scheduling rules, not just EXP; as such, we believe
it is of independent interest.

4 Extended description of the system process. Se-

quence of uid-scaled processes

As the formulation of Theorem 3.2 suggests (and is typical for this type of large deviations
results for queueing systems), its proof involves considering a sequence of \uid-scaled"
versions of the queue length process Q, namely the processes �nQ = ((1=n)Q(nt); t � 0),
for n = 1; 2; : : :. In this section we de�ne this sequence formally. But �rst, we need to
introduce additional functions associated with the system evolution.

For t � 0 let

Fi(t)
:
=

btcX
k=1

Ai(k) and F̂i(t)
:
=

btcX
k=1

Di(k) (4.1)

denote the total number of ow i customers, respectively arrived to and departed from
the system by (and including) time t, that is in the time slots 1 � k � btc. (Recall our
convention, introduced in Section 3.4, that we extend the domain of discrete time processes to
continuous time t � 0.) Also, denote by Gm(t) the total number of time slots 0 � k � bt�1c
when the channel was in state m; and by Ĝmi(t) the number of time slots 0 � k � bt � 1c
when the server state was m and ow i was chosen for service.

The following set of functions describes the evolution of the system in time interval
[0;1):

(Q;Q�; F; F̂ ; G; Ĝ);

where
Q = (Q(t) = (Q1(t); : : : ; QN (t)); t � 0);

Q� = (Q�(t) � max
i
aiQi(t); t � 0);
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F = (F (t) = (F1(t); : : : ; FN(t)); t � 0);

F̂ = (F̂ (t) = (F̂1(t); : : : ; F̂N(t)); t � 0);

G = ((Gm(t); m 2M); t � 0) ;

Ĝ = ((Ĝmi(t); m 2M; i 2 N); t � 0):

The set of functions (Q;Q�; F; F̂ ; G; Ĝ) clearly has redundancies. The entire set is
uniquely determined by the initial state Q(0), the realizations F and G of the input ow and
channel state processes, which \drive" the system, and the realization Ĝ, which determines
the scheduling choices. In particular, the following basic relations (implied by (3.3), (4.1),
and the de�nitions of Gm(�) and Ĝmi(�)) hold:

Qi(t) = Qi(0) + Fi(t)� F̂i(t); t � 0; 8i; (4.2)

Gm(t) =
X
i

Ĝmi(t); t � 0; 8m: (4.3)

Also, from (3.3) and the observation following it, we see that, if for all t in an interval
[t1 � 1; t2] we have Qi(t) > maxm �

m
i (which means that the service provided to queue i is

not \wasted"), then

F̂i(t2)� F̂i(t1) =
X
m

�mi [Ĝmi(t2)� Ĝmi(t1)]: (4.4)

In what follows, we will use bold font (Q;Q�;F; F̂;G; Ĝ) when we view this set of
functions as a random process, and use Roman font when we view it as a deterministic
sample path.

For each index n = 1; 2; : : :, consider a (stochastically equivalent) version of our system,
and denote by (Q(n);Q�

(n);F(n); F̂(n);G(n); Ĝ(n)) the corresponding process. The correspond-
ing sequence of uid-scaled processes is de�ned as

(q(n);q�
(n); f (n); f̂ (n); g(n); ĝ(n))

:
= �n(Q(n);Q�

(n);F(n); F̂(n);G(n); Ĝ(n));

with n = 1; 2; : : :.

5 Sample path large deviations principle: Mogulskii

Theorem

The sequence of processes (f (n); g(n)) is known to satisfy a sample path LDP, described in
this section.

Assumption (3.1) on the input ows implies (cf. Chapter 2.2.1 in [6]) that, for each i,
function

Li(�)
:
= sup

��0
[�� � logEe�Ai(1)]; � � 0;
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which is the large deviations rate function of the sequence (1=n)[Ai(1) + : : : + Ai(n)], has
the following properties. Li(�) is a convex lower semi-continuous function on [0;1), taking
values in [0;+1], attaining its unique minimum 0 at ��i, i.e.

Li(��i) = 0; and Li(�) > 0 for � 6= ��i;

and it is superlinear at in�nity, i.e.

Li(�)=� !1; � !1:

(We adopt the convention that Li(�) = +1 for � < 0.) In particular, if Ai(1) is bounded,
then Li(�) is �nite and continuous in [Cmin

i ; Cmax
i ], where Cmin

i and Cmax
i are the minimum

and maximum possible values, and is +1 elsewhere; if Ai(1) is unbounded, Li(�) is �nite
and continuous in [Cmin

i ;1).

For a vector y 2 RN we will use notation

L(f)(y)
:
=
X
i

Li(yi):

(Subscript (f) indicates that this is the rate function associated with input ows.)

The relative entropy of a probability distribution  = (1; : : : ; M) with respect to the
distribution � we denote by

L(g)()
:
=

X
m2M

m log
m
�m

:

According to Sanov theorem (cf. Theorem 2.1.10 in [6]), L(g)(�) is the large deviations rate
function for the sequence of empirical distributions of the channel state over n trials (with
n ! 1). Function L(g)(�) is (�nite) continuous and convex on the simplex of probability
distributions ; we adopt the convention that L(g)(�) is de�ned on RM and is +1 outside
the above simplex.

For a pair (f; g) of vector-functions f 2 DN and g 2 DM , its cost Jt(f; g) in time interval
[0; t] is de�ned as

Jt(f; g)
:
=

( R t
0 [L(f)(f

0(s)) + L(g)(g
0(s))]ds if � t0(f; g) 2 �

t
0A

N+M
0 ;

1 otherwise;
(5.1)

More generally, if the functions f and g have a bounded domain [0; d], that is (f; g) 2
�d0D

N+M , the cost Jt(f; g) is still de�ned by (5.1), as long as t � d.

The following is (a form of) Mogulskii theorem (cf. Theorem 5.1.2 in [6]).

Proposition 5.1 Consider a sequence of scaled processes (f (n); g(n)), n = 1; 2; : : :, as de-
�ned in Section 4. Then, for every c � 0 and t � 0, the sequence of processes ��c+tc (f (n); g(n))
satis�es the LDP with good rate function Jt(�). In more detail, for any measurable B �
� t0D

N+M , we have the following asymptotic (respectively lower and upper) bounds:

lim inf
n!1

1

n
logP (��c+tc (f (n); g(n)) 2 B) � � inffJt(h) j h 2 B

Æg ; (5.2)

lim sup
n!1

1

n
logP (��c+tc (f (n); g(n)) 2 B) � � inffJt(h) j h 2 �Bg : (5.3)
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6 LD lower bound under any scheduling rule. Proof of

Theorem 3.2(i)

6.1 Simple trajectories to raise maximal weighted queue length

Let  = fm; m 2 Mg be some (\twisted") probability distribution on the set of channel
states, not necessarily equal to the distribution �. We denote by V the corresponding
\twisted" rate region, de�ned the same way as V but with � replaced by . (Thus V = V�.)
In addition, for every non-zero subset N 0 � N , we denote by V(N

0) the projection of V
onto the corresponding subspace RjN 0j, where jN 0j is the cardinality of N 0. We denote by
V �
 (N

0) the subset of maximal elements of V(N
0), that is

V �
 (N

0)
:
= fv 2 V(N

0) j v � w 2 V(N
0) implies w = vg:

For a �xed non-zero subset N 0 � N , consider pairs of a distribution  and a vector
� = f�i; i 2 N 0g such that there exists a vector � = f�i; i 2 N 0g 2 V �

 (N
0) for which the

following condition holds:
ai(�i � �i) = ` > 0; 8i 2 N 0:

(Note that if such a vector � exists, it is unique, because this is the point where the ray
emanating from point � in the direction given by f�1=ai; i 2 N 0g, hits the region V(N

0).)
Let us denote

J�(N
0)
:
= inf

L(g)() +
P

i2N 0 Li(�i)

`
;

where the inf is taken over all pairs of  and �, as speci�ed above. Finally, we de�ne

J� = min
N 0�N; N 0 6=;

J�(N
0):

We now give the interpretation of the above de�nitions. Let N 0 = N for simplicity.
Consider the process with large index n on a (large) time interval [0; nt] for some �xed
t. Suppose the empirical distribution of the channel states in this interval is a \twisted"
distribution , possibly di�erent from �. Moreover, we assume that the uid-scaled channel
state process trajectory is \close to" linear: g(n)(s) � g(s) � s; 0 � s � t. Suppose also that
the uid-scaled input ow trajectory is `close to" linear: f (n)(s) � f(s) � �s; 0 � s � t,
for some vector � not necessarily equal to the average rate vector ��. The cost of this
linear trajectory of the input and channel state processes is Jt(f; g) = [L(f)(�) + L(g)()]t.
(In other words, the \probability" of (f (n); g(n)) being close to (f; g) in the interval [0; t] is
roughly exp[�n(L(f)(�)+L(g)())t].) Suppose now that vectors  and � satisfy the conditions
speci�ed above, with the corresponding vector �. Then, a scheduling rule can be chosen (at
least in principle) such that the (scaled) service process trajectory is approximately linear:
f̂ (n)(s) � f̂(s) � �s; 0 � s � t. Then, if q(n)(0) = 0, the queue length trajectory in [0; t] is
approximately linearly increasing as well, and moreover,

aiq
(n)
i (s) � aiqi(s) = `s for each i:

13



This means that for all ows, aiq
(n)
i (s) is approximately equal to their maximum q

(n)
� (s)

at any time s, and q
(n)
� (s) reaches level `t at time t. Thus, the constructed linear simple

trajectory (f; g; q), which is determined by the vectors �,  and �, has the \unit cost of
raising q�(s)" equal to [L(g)() + L(f)(�)]=`. Therefore, the value J� de�ned above in this
section is the minimum possible unit cost of raising q�(s) along a simple trajectory.

The key property of the above construction of a simple trajectory (f; g; q) is as follows.
Given vectors � and , the corresponding vector of service rates � is optimal in the sense
that all aiqi(s), and then q�(s), simultaneously reach level `t at time t. Using the condition
that � is a maximal element of V(N

0), it is easy to see that if (f; g) is the trajectory of input
and channel state processes \o�ered" to the system, then under any scheduling rule and for
any initial condition q(0), at least one of the aiqi(t), and then q�(t), is `t or greater. Thus,
for any scheduling rule, J� serves as an upper bound of the minimum possible cost of raising
(scaled) maximal weighted queue length q�(�) to level 1.

Our simple trajectory construction is in a sense analogous to, and serves the same
purpose as, those in [12, 13]. It is however necessarily more involved, because in our case the
rate region is more general convex, while in [12, 13] the outer boundary of the rate region is
a hyperplane (which implies simple \work conservation" properties).

6.2 Proof of Theorem 3.2(i)

The proof formalizes the argument presented above in this section, using the construction of a
simple trajectory and Mogulskii theorem (Proposition 5.1). This formalization is completely
analogous to the proof of Theorem 3.2(ii) in [13] (or proof of Theorem 6.8(ii) in [12]). We
omit details.

7 Re�ned Mogulskii Theorem (upper bound)

From this point on in the paper, we make assumption (3.2), with some �xed C > 0.

From the standard Cramer theorem for scalar random variables (cf. Theorem 2.2.3 in
[6]), we have the following bound, recorded here for future reference: for any interval [�1; �2],
where 0 � �1 < �2 � C, and any �xed Æ > 0, there exists a suÆciently large � > 0 such that,
uniformly on non-negative 0 � t1 < t2 satisfying t2 � t1 � � :

logPf
1

t2 � t1
[Fi(t2)� Fi(t1)] 2 [�1; �2]g � �

"
min
[�1;�2]

Li(�)� Æ

#
(t2 � t1): (7.1)

If B � IRM
+ is compact, then according to Sanov theorem (cf. Theorem 2.1.10 in [6]),

we can record the following property analogous to (7.1): for any �xed Æ > 0, there exists a
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suÆciently large � > 0 such that, uniformly on non-negative integers 0 � t1 < t2 satisfying
t2 � t1 � � , we have

logPf
1

t2 � t1
[G(t2)�G(t1)] 2 Bg � �

�
min
2B

L(g)()� Æ
�
(t2 � t1): (7.2)

Suppose we have an integer function u(n) " 1 as n ! 1, which is sublinear in n,
i.e., u(n)=n # 0. (An example of such a function is u(n) = dn�e, with 0 < � < 1.) For
any (non-decreasing) RCLL vector-function h 2 DN+M , and each n, we denote by Unh the
continuous piece-wise linear function obtained from h as follows: we divide the time interval
[0;1) into subintervals of equal length u(n)=n, that is [0; u(n)=n]; [u(n)=n; 2u(n)=n]; : : :, and
linearize h within each subinterval.

Theorem 7.1 Assume (3.2). Consider the sequence of scaled processes (f (n); g(n)), n =
1; 2; : : :, as de�ned in Section 4. Let t > 0 be �xed. Suppose, for each n there is a �xed
measurable B(n) � � t0D

N+M , which is a subset of the set of feasible realizations of (f (n); g(n))
in [0; t]. (Here feasible simply means that each jump size of each component is such that it
can occur with a positive probability.) Then, for any �xed function u(n) as de�ned above, we
have the following asymptotic upper bound:

lim sup
n!1

1

n
logP (� t0(f

(n); g(n)) 2 B(n)) � � lim inf
n!1

inffJ�(n)(t)(U
nh) j h 2 B(n)g ; (7.3)

where �(n)(t) is the largest multiple of u(n)=n not greater than t, i.e.,

�(n)(t)
:
=
u(n)

n
b

t

u(n)=n
c: (7.4)

Proof. To avoid clogging notation, assume that �(n)(t) = t for each n, i.e., the time
interval [0; t] is divided into the integer number tn=u(n) of u(n)=n-long subintervals. The
proof is a fairly straightforward combinatorial estimate.

Let us �x a small Æ > 0. We choose a large integer K > 0 and divide interval [0; C) into
K subintervals, each � = C=K-long, namely [(k� 1)�; k�) with k = 1; : : : ; K. (Constant C is
the upper bound in (3.2).) The k-th interval de�ned above we will call k-th \bin". We will
choose K to be large enough so that

maxfjLi(y1)� Li(y2)j : Li(y1); Li(y2) <1; y1; y2 2 [(k � 1)�; k�)g < Æ=(4N)

uniformly for all bins k. (Recall that each Li is continuous in the compact domain where it
is �nite.) We will choose � > 0 such that (7.1) holds, with Æ replaced by Æ=(4N), for all i
and for the intervals [�1; �2] being closures of the bins.

Let us divide the simplex of all vectors representing probability distributions  on the
set of channel states M into K non-intersecting subsets (\bins"), such that the oscillation
(di�erence between maximum and minimum) of L(g)() within the closure of each bin is at
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most Æ=4. (The latter can always be achieved by making K larger, if necessary.) We also
will increase � , if necessary, to make sure that (7.2) holds for all such bins, with Æ replaced
by Æ=4.

Let Ĵ denote the lim inf in the RHS of (7.3). From now on in this proof we will only
consider suÆciently large n such that inffJt(Unh) j h 2 B(n)g > Ĵ � Æ, and u(n) > � , where
� is chosen above.

Consider a �xed n, a vector-function h = (fi; i = 1; : : : ; N ; g) 2 B(n), and its piece-wise
linearization Unh = (Unfi; i = 1; : : : ; N ;Ung). Recall that each component of Unh has a
constant non-negative derivative in each of the tn=u(n)-long time-subintervals of [0; t]. Thus,
the vector-function h can belong to one of the �nite number [K(N+1)]tn=u(n) of \aggregate
bins," according to which bins the (constant) slopes of the components Unfi and U

ng belong
to, in each of the time-subintervals.

Now, consider any �xed aggregate bin, let us call it Bab, containing at least one function
belonging to B(n), and let us pick a �xed representative element h 2 B(n). (Recall that
Jt(U

nh) > Ĵ � Æ.) Consider one of the time-subintervals [(j � 1)u(n)=n; ju(n)=n] for some
integer 1 � j � tn=u(n). By de�nition, the event f� t0(f

(n); g(n)) 2 Babg implies, in particular,
that

1

u(n)=n
[f

(n)
i (ju(n)=n)� f

(n)
i ((j � 1)u(n)=n)] 2 [�1; �2];

where [�1; �2] is the bin uniquely determined by the aggregate bin Bab. For the component
fi of the picked element h denote

y �
1

u(n)=n
[fi(ju(n)=n)� fi((j � 1)u(n)=n)];

and recall that Li(y)�min[�1;�2] Li(�) � Æ=(4N). Then from (7.1) (with Æ replaced by Æ=(4N))
we have

logPf
1

u(n)=n
[f

(n)
i (ju(n)=n)� f

(n)
i ((j � 1)u(n)=n)] 2 [�1; �2]g �

�[min
[�1;�2]

Li(�)� Æ=(4N)]u(n) � �[Li(y)� Æ=(2N)]u(n) �

�n
Z ju(n)=n

(j�1)u(n)=n

"
Li(

d

ds
[Unfi(s)])� Æ=(2N)

#
ds:

Analogous estimates hold for all subintervals [(j � 1)u(n)=n; ju(n)=n], all f
(n)
i , and also

(using (7.2)) for the process g(n). Since all f
(n)
i and g(n) have independent increments, we

can combine the above estimates to obtain the following upper bound:

logPf� t0(f
(n); g(n)) 2 Babg � �[Jt(U

nh)n� Ætn] �

� �Ĵn+ Æn + Ætn :

The total number of aggregate bins is expf (N+1)(logK)t
u(n)

ng with [(N + 1)(logK)t]=u(n) ! 0
as n!1. This means that

Pf� t0(f
(n); g(n)) 2 B(n)g � eÆnnPf� t0(f

(n); g(n)) 2 Babg
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with Æn ! 0. Therefore,

lim sup
n!1

1

n
logP (� t0(f

(n); g(n)) 2 B(n)) � � Ĵ + Æ(1 + t) :

Since Æ can be chosen arbitrarily small, the proof is complete.

8 Large deviations upper bound via Re�ned Mogulskii

Theorem. Proof of Theorem 3.2(ii)

8.1 Generalized uid sample paths

From now on we specify the function u(n), de�ned in Section 7, to be

u(n) = dn�e; n = 1; 2; : : : ;

for some �xed � 2 (0; �).

De�nition 8.1 Suppose an increasing subsequence N of the sequence of positive integers is
�xed, and the following conditions (i) and (ii) hold.

(i) For each n 2 N , there is a �xed (feasible) realization (q(n); q
(n)
� ; f (n); f̂ (n); g(n); ĝ(n))

of the process (q(n);q�
(n); f (n); f̂ (n); g(n); ĝ(n)).

(ii) As n!1, we have the u.o.c. convergence

(q(n); q(n)� ; f (n); f̂ (n); g(n); ĝ(n))! (q; q�; f; f̂ ; g; ĝ) (8.1)

for some set of Lipschitz continuous functions (q; q�; f; f̂ ; g; ĝ), and the u.o.c. convergence

�J (n) = ( �J
(n)
t ; t � 0)

:
= (J�(n)(t)[U

n(f (n); g(n))]; t � 0)! �J = ( �Jt; t � 0) (8.2)

for some non-negative non-decreasing Lipschitz continuous function �J .

Then, the entire construction

 = [N ; (q(n); q(n)� ; f (n); f̂ (n); g(n); ĝ(n)); �J (n); n 2 N ; (q; q�; f; f̂ ; g; ĝ); �J ]

will be called a generalized uid sample path (GFSP). The non-decreasing function �J will
be called the re�ned cost function of the GFSP.

Remark. A set of functions (q; q�; f; f̂ ; g; ĝ), de�ned as a limit of a sequence of uid
scaled trajectories of a process, is sometimes called a uid sample path (FSP), cf. [13].
Therefore, the term \generalized" in the above de�nition of a GFSP refers to the fact that
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GFSP contains not only the \uid limit" of a (pre-limit) sequence, but the sequence itself.
Moreover, the pre-limit sequence is required to satisfy condition (8.2).

Given that the (unscaled) functions F
(n)
i , F̂

(n)
i , G(n)

m , Ĝ
(n)
mi obviously have uniformly

bounded increments within one time slot, the GFSP components f; f̂ ; g; ĝ are non-decreasing
Lipschitz continuous (and then absolutely continuous) functions in [0;1), with f(0) =
0; f̂(0) = 0; g(0) = 0; ĝ(0) = 0; therefore, the components q and q� are Lipschitz as well.
Moreover, the functions �J are uniformly Lipschitz across all GFSP, because each �J (n) is
Lipschitz with the derivative upper bounded by the maximum of all possible �nite values of
L(f)(y) + L(g)().

Further, for any 0 � t1 < t2 <1,

�Jt2 � �Jt1 � Jt2(f; g)� Jt1(f; g): (8.3)

Indeed, if f and g are linear in [t1; t2], then (8.3) holds, because, for each n, by Jensen
inequality,

�J
(n)
t2 � �J

(n)
t1 � (�2� �1)L(f)

 
f (n)(�2)� f (n)(�1)

�2 � �1

!
+(�2� �1)L(g)

 
g(n)(�2)� g(n)(�1)

�2 � �1

!
; (8.4)

where we denoted �2 = �(n)(t2) and �1 = �(n)(t1) + 1=n; it remains to take n ! 1 limit.
This means that (8.3) holds for any piece-wise linear f and g (with �nite number of pieces)
in [t1; t2]. It remains to observe that, for actual functions f and g in [t1; t2], we can con-
struct a sequence of their piece-wise linearizations with the derivatives converging to the
corresponding derivatives of f and g almost everywhere in [t1; t2].

We will also need the following simple facts (in Lemmas 8.2 and 8.3).

Lemma 8.2 Suppose there exists a sequence f(f (n); g(n)); n 2 Ng of feasible realizations of
the (scaled) input and channel state processes, such that

(f (n); g(n))! (f; g) u:o:c: (8.5)

Then there exists a GFSP, having this (f; g) as its f - and g-components and such that its
re�ned cost function �J = ( �Jt; t � 0) is equal to (Jt(f; g); t � 0). (Note that the sequence
f(f (n); g(n))g in (8.5) does not have to be a part of such GFSP.)

Proof. First of all, (f; g) must be Lipschitz. (Because the corresponding unscaled
realizations F (n) and G(n) have uniformly bounded increments within each time slot.) Let us
�x an integer T > 0 and consider the function flin, which is the piece-wise linearized version
of f in interval the [0; T ] over 1=T -long subintervals (T 2 of them in total). For t � T , flin(t) =
f(t). Given (8.5), we can pick �xed n1 such that u(n1)=n1 � 1=T 2 and n1 is suÆciently large

so that we can construct a feasible realization f
(n1)
lin such that kf (n1)

lin � flinkT � �C=n1, where
the constant �C > 0 does not depend on n1. (For example, let 0 � Cmin

i � Cmax
i <1 denote

the minimum and maximum possible values of Ai(1). We can make each component f
(n1)
i;lin (�)
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to \track" fi;lin(�) recursively in time, by giving it the increment Cmax
i =n1 at time t (being

multiple of 1=n1) if f
(n1)
i;lin (t�) < fi;lin(t�), and increment it by Cmin

i otherwise.) We repeat
the construction with T replaced by kT , k = 2; 3; : : :, to obtain sequence of corresponding
piece-wise linearizations flin (depending on k) and corresponding realizations f (nk)

lin with

nk ! 1. We have f
(nk)
lin ! f u.o.c. and [u(nk)=nk]=[1=(kT )] ! 0 as nk ! 1. (This

implies that \most" of the u(nk)=nk-long subintervals of [0; kT ] lie entirely within one of

the 1=(kT )-long subintervals.) \In parallel," we can also construct analogous sequence g
(nk)
lin

approximating g. It remains to pick, if necessary, a subsequence of nk to obtain a sequence
of process realizations de�ning a GFSP. Obviously, this GFSP has (f; g) as its components.
It is also easy to verify that the re�ned cost of this GFSP is indeed (Jt(f; g); t � 0). Indeed,

we can show that the di�erence between �J
(nk)
t , de�ned for (f

(nk)
lin ; g

(nk)
lin ) as in (8.2), and the

corresponding Jt(flin; glin) (recall that (flin; glin) also depends on k) vanishes u.o.c.; in turn,
Jt(flin; glin) converges u.o.c. to Jt(f; g), because (d=dt)Jt(flin; glin) ! (d=dt)Jt(f; g) almost
everywhere.

Lemma 8.3 Suppose, a sequence of GFSP k , k = 1; 2; : : :, is such that the values of kkq(0)k
are uniformly bounded. Then, there exists a GFSP  such that, along some subsequence of
k,

[(kq; kq�;
kf; kf̂ ; kg; kĝ); k �J ]! [(q; q�; f; f̂ ; g; ĝ); �J ] u:o:c:; (8.6)

for the corresponding components of k and  .

Proof. We can �nd a subsequence along which uniform convergence (8.6) holds, be-
cause kkq(0)k are uniformly bounded and all component functions in the LHS are uniformly
Lipschitz. Restricting ourselves from now on to this subsequence, for any T > 0 we can
�nd a suÆciently large k so that [(kq; kq�;

kf; kf̂ ; kg; kĝ); k �J ] is uniformly close (say,
within �k) to [(q; q�; f; f̂ ; g; ĝ); �J ] in [0; T ]. Then, we can �nd a suÆciently large nk so

that [(kq(nk); kq
(nk)
� ; kf (nk); kf̂ (nk); kg(nk); kĝ(nk)); k �J (nk)] is uniformly close (within �k) to

[(kq; kq�;
kf; kf̂ ; kg; kĝ); k �J ] in [0; T ]. Choosing a sequence of

[(kq(nk); kq
(nk)
� ; kf (nk); kf̂ (nk); kg(nk); kĝ(nk)); k �J (nk)] with T !1 and �k ! 0, we see that

this sequence has [(q; q�; f; f̂ ; g; ĝ); �J ] as its u.o.c. limit, and thus we constructed a GFSP
we seek.

8.2 De�nition of cost J
��
. Equivalent form of Theorem 3.2(ii)

Let J�� denote the lowest re�ned cost of a GFSP which \brings" q�(t) to level 1 from the
zero initial state q(0) = 0. Namely,

J��
:
= inf

t�0
J��;t; (8.7)

where
J��;t

:
= inff �Jt j  : q(0) = 0; q�(t) � 1g: (8.8)
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From the de�nition of J� in Section 6 (via the construction of simple trajectories) and
Lemma 8.2, we conclude that

J�� � J�;

because we can always construct a GFSP for which (f; g) is a simple trajectory with q�(t) � 1
for some t > 0, and with Jt(f; g) being arbitrarily close to J�.

The goal of this section is to establish the following fact, which is Theorem 3.2(ii)
rephrased in terms of the sequence of uid-scaled processes.

Theorem 8.4 For each parameter n = 1; 2; : : :, consider a version of the system under the
EXP rule in a stationary regime. Then, the corresponding sequence of uid-scaled processes
is such that

lim sup
n!1

1

n
logP

�
q�

(n)(0) > 1
�
� �J�� : (8.9)

The proof of Theorem 8.4 will be carried out in Section 8.4, analogously to the proof of a
similar result in Section 10 of [13], namely, by using classical Wentzell-Freidlin constructions
[8] to \translate" large deviations results on a �nite time interval into results in a stationary
regime. But �rst, as in [13], we need to establish those �nite time interval properties.

8.3 Large deviations properties on a �nite time interval

Theorem 8.5 For any �xed T � 0 and 0 � c < 1, let us denote

J��;�T;c
:
= inff �Jt j  : q�(0) � c; q�(t) � 1 for some t � Tg:

Then, we have:

lim sup
n!1

1

n
log sup

q
(n)
� (0)�c

P

 
sup
t2[0;T ]

q�
(n)(t) > 1

!
� �J��;�T;c ; (8.10)

where the sup over q
(n)
� (0) � c is a supremum over all processes with non-random initial

state satisfying this condition, and

J��;�T;c # J��;�T;0 � inf
t�T

J��;t; as c # 0: (8.11)

Proof. We have

sup
q
(n)
� (0)�c

P

 
sup
t2[0;T ]

q�
(n)(t) > 1

!
� P

�
(f (n); g(n)) 2 B(n;c)

�
;

where

B(n;c) := f(f (n); g(n)) j 9 q(n)(0) and t � T; such that q(n)� (0) � c and q(n)� (t) > 1g:
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By Theorem 7.1,

lim sup
n!1

1

n
logP

�
(f (n); g(n)) 2 B(n;c)

�
� � lim inf

n!1
inffJ�(n)(T )(U

nh) j h 2 B(n;c)g : (8.12)

If we denote by Y the lim inf in the RHS of (8.12), we have Y � J��;�T;c. Indeed, we can
choose a subsequence, on n, of trajectories h(n) 2 B(n;c), with J�(n)(T )(U

nh(n)) ! Y , which
converges and de�nes a GFSP with re�ned cost Y , and satis�es the conditions de�ning
J��;�T;c. This proves (8.10). The cost J��;�T;c is non-increasing and continuous in c. (The
continuity easily follows from Lemma 8.3.) This proves (8.11).

Theorem 8.6 For any �xed C� > Æ > 0, and T > 0, let us denote

K(C�; Æ; T )
:
= inff �JT j  : q�(0) � C�; q�(t) � Æ for all t 2 [0; T ]g:

Then, we have:

lim sup
n!1

1

n
log sup

q
(n)
� (0)�C�

P

 
sup
t2[0;T ]

q(n)
� (t) � Æ

!
� �K(C�; Æ; T ) : (8.13)

(The sup over q
(n)
� (0) � C� is supremum over all processes with non-random initial state

satisfying this condition.)

Proof of this fact is completely analogous to that of Theorem 8.5.

Theorem 8.7 Given �xed C� > 0, the value of the cost K(C�; Æ; T ), de�ned in Theorem 8.6,
grows linearly with T , uniformly on Æ > 0. More precisely, for any C� > 0 there exists �1 > 0
such that, for all suÆciently large T and all Æ 2 (0; C�), K(C�; Æ; T ) � �1T .

Proof of this theorem is postponed until Section 10, because it requires the notion of a
local uid sample path, which we de�ne and study in Section 9.

The proof of the process Q stability, carried out in [10], includes (as the key part) the
following property of the scaled processes: for some T2 > 0 and Æ2 > 0, and all suÆciently
large n, uniformly on the initial states with q(n)� (0) � 1, we have

Eq(n)
� (T2) � 1� Æ2:

In turn, this property along with Dynkin inequality implies (see Lemma 9.2 in [13]) the
following

Lemma 8.8 Let constants C� > Æ > 0 be �xed. Consider the stopping time

�
(n)
1 = infft � 0 j q(n)

� (t) � Æg :

Then, for all suÆciently large n, uniformly on the initial states with q
(n)
� (0) � C�, we have

E�
(n)
1 � �C� <1 ;

for some �nite � > 0.

21



8.4 Proof of Theorem 8.4

Let us choose arbitrary C� > 1 and choose T > 0 large enough so that K(C�; Æ; T ) > J�� for
any Æ > 0. (We can choose such T by Theorem 8.7.) Let us choose arbitrary small �2 > 0
and then �� > 0 small enough so that J��;�T;�� > J�� � �2. (See Theorem 8.5.) Let us choose
arbitrary � and Æ such that 0 < Æ < � < ��.

Let us denote by p(n) the stationary distribution of the rescaled process q(n). To prove
Theorem 8.4 we need to show that

lim sup
n!1

1

n
log p(n)(q(n)

� (t) > 1) � �J��: (8.14)

Consider the sequence of scaled processes fq(n); n = 1; 2; : : :g, and for each of them
de�ne the sequence of stopping times

0 = �
(n)
0 � �

(n)
1 � �

(n)
1 � �

(n)
2 � : : :

as follows:
�
(n)
j = infft � �

(n)
j�1 j q

(n)
� (t) � Æg; j � 1;

�
(n)
j = infft � �

(n)
j j q(n)

� (t) � �g; j � 1 :

Given that we consider an ergodic version of each process q(n), it is easy to verify that this
process, sampled at the stopping times �

(n)
j ; j = 1; 2; : : :, is also ergodic. Indeed, this is the

Markov chain
q̂(n) = fq̂(n)

j
:
= q(n)(�(n)j ); j = 1; 2; : : :g;

with �nite number of states (because jumps of q(n) are uniformly bounded); all states of q̂(n)

are connected because so are the states of q(n). Let us denote by p̂(n) the unique stationary
distribution of chain q̂(n). It is also easy to check that, if we consider an ergodic version
of process q(n), then E[�

(n)
j � �

(n)
j�1] < 1 for any n. Given this, we have the following

representation of the stationary distribution of q(n) via that of q̂(n) (cf. Lemma 10.1 in [13]
and references therein):

p(n)(B) =

R
�(n) p̂(n)(dx)Ex

R �(n)1
0 Ifq(n)(t) 2 BgdtR

�(n) p̂(n)(dx)Ex�
(n)
1

; (8.15)

where B is a subset of states of q(n) (the entire state space is countable, so there is no

measurability issues), �(n) is the (countable) state space of q̂(n), �(n)1 is the stopping time
for process q(n) as de�ned above; also, here and below (with a slight abuse of notation) we
write Px for the conditional distribution of process q(n) given initial state q(n)(0) = x, and
Ex for the corresponding expectation.

We are interested (see (8.14)) in estimating p(n)(B) for the set B = fq� > 1g. We will
evaluate the asymptotics of both the denominator and the numerator of (8.15) as n!1.
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First, it is easy to see that

lim inf
n!1

inf
x2�(n)

Ex[�
(n)
1 � �

(n)
1 ] > 0;

because the jumps of Q(n) are uniformly bounded and then the increments of q(n) within
1=n-long intervals are bounded by Ĉ=n for some constant Ĉ. Therefore, the lim inf of the
denominator of (8.15) is bounded away from 0 for all large n.

To estimate the numerator of (8.15), consider the following additional stopping time:

�(n);" = infft � 0 j q(n)
� (t) � 1g:

Note that, for all suÆciently large n, at the stopping time t = �(n)j we must have q(n)
� (t) < ��

(recall that � < ��), and therefore q� < �� for any state in �(n); similarly, at the stopping

time t = �(n);" we have q(n)
� (t) < C�.

For any �xed x such that q� � ��, we can write

Ex

Z �
(n)
1

0
Ifq(n)(t) 2 Bgdt � Pxf�

(n);" � �
(n)
1 g sup

y: q��C�

Ey�
(n)
1 :

We know from Lemma 8.8 that

lim sup
n!1

sup
y: q��C�

Ey�
(n)
1 � �C�;

and have the estimate

Px(�
(n);" � �

(n)
1 ) � Px(�

(n)
1 � T ) + Px(�

(n);" � T ):

Finally, we have (since K(C�; Æ; T ) > J�� by our choice of T )

lim sup
n!1

1

n
log sup

x: q����
Px(�

(n)
1 � T ) < �J�� ;

and (due to Theorem 8.5 and since J��;�T;�� > J�� � �2 by our choice of ��)

lim sup
n!1

1

n
log[ sup

x: q����
Px(�

(n);" � T )] � �(J� � �2) :

Since �2 can be chosen arbitrarily small, we have proved (8.14), and therefore the desired
bound (8.9).

9 Construction of a local uid sample path

In this section, we introduce the notion of a local uid sample path. This notion naturally
arises if we want to study properties of GFSPs on in�nitesimal intervals. Roughly speaking,
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to estimate the derivatives of a GFSP components, sometimes one needs to consider the
behavior of the process on a time scale \�ner" than uid scale. (This may not be necessary
under any scheduling rule, but typically is unavoidable for rules that are not asymptotically
scaling-invariant, such as EXP.)

Consequently, the idea of a local FSP construction is roughly as follows. (The actual
construction, given later in this section, is somewhat more involved.) For each n, we consider

the uid scaled functions, say function f (n)
i (�) to be speci�c, in the Sn��1-long intervals

[�; � + Sn��1], where � and S > 0 are �xed constants. We look at the increments of this
function, \magni�ed in space and time" by factor n1��:

�f
(n)
i (s) = n1��[f

(n)
i (� + n��1s)� f

(n)
i (�)]; s 2 [0; S];

and take a limit, which is a function �f i(s) on [0; S]. Thus, in terms of the original -
unscaled - time, a local FSP describes the evolution of the process over Sn�-long intervals.
This illustrates the reason for choosing (for the EXP rule) the speci�c rescaling described
above: when the queue length vector Q(�), and therefore �Q(�), is of the order of n, then n� is
the relevant space and time scale order to consider the dynamics of the queue length. (Order
n� di�erences between queue lengths Qi correspond to order 1 di�erences in the exponents
in (3.6).)

The formal construction is as follows. Consider a �xed GFSP  . Let us introduce
\recentered" weighted queue lengths (similar to those in [10])

~Q
(n)
i (t)

:
= aiQ

(n)
i (t)� bi[ �Q

(n)(t)]�;

where a �xed vector b = (b1; : : : ; bN) 2 IR
N is chosen such that eb 2 IRN

++ is an outer normal
to the rate region V at some point v� > ��. (Note that necessarily v� is a maximal element

of V , that is v� 2 V �
� (N).) The uid-scaled version ~q(n)i = �n ~Q(n)

i is

~q
(n)
i (t) = aiq

(n)
i (t)� bi[�q

(n)(t)]�n��1; t � 0;

and its uid limit is (aiqi(t); t � 0). Therefore, we have u.o.c. convergence:

~q
(n)
i = (~q

(n)
i (t); t � 0)! (aiqi(t); t � 0); 8i;

~q(n)� = (~q(n)� (t); t � 0)! q�;

where
~q(n)� (t)

:
= max

i
~q
(n)
i (t):

Let a time point �1 > 0 be �xed, such that q�(�1) > 0. Suppose we have a sequence (in

n) of time intervals [t
(n)
1 ; t

(n)
2 ], such that the following condition is satis�ed:

t
(n)
2 � t

(n)
1 = S�n;

where S > 0 is a �xed constant and �n = [�q(n)(t
(n)
1 )]�n��1.
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For each n, consider the following rescaled functions. For s 2 [0; S], let

�q
(n)
i (s)

:
=

1

�n
[~q

(n)
i (t

(n)
1 + �ns)� ~q(n)� (t

(n)
1 )]; i 2 N;

�q
(n)
� (s)

:
= max

i
�q

(n)
i (s) �

1

�n
[~q(n)� (t

(n)
1 + �ns)� ~q(n)� (t

(n)
1 )]; (9.1)

�f
(n)
i (s)

:
=

1

�n
[f

(n)
i (t

(n)
1 + �ns)� f

(n)
i (t

(n)
1 )]; i 2 N;

�
bf (n)

i (s)
:
=

1

�n
[f̂

(n)
i (t

(n)
1 + �ns)� f̂

(n)
i (t

(n)
1 )]; i 2 N;

�g
(n)
m (s)

:
=

1

�n
[g(n)m (t

(n)
1 + �ns)� g(n)m (t

(n)
1 )]; m 2M;

�bg(n)mi (s)
:
=

1

�n
[ĝ

(n)
mi (t

(n)
1 + �ns)� ĝ

(n)
mi (t

(n)
1 )]; m 2M; i 2 N:

Now, we can �nd a subsequence of n such that the following u.o.c. convergence holds:

(�q
(n)
� ; �f

(n); � bf (n)
; �g

(n); �bg(n))! (�q�; �f; �
bf; �g; �bg); (9.2)

where all vector-functions are considered in the interval s 2 [0; S], and the limit functions in
the RHS are Lipschitz continuous. Note that expression (9.2) is for 5-tuples: the convergence

�q
(n) ! �q cannot be included in the proper sense, because it is possible that for some i,

�q
(n)
i (0)! �1. However, the uniform convergence (9.2) implies that we can choose a further

subsequence of n along which, in addition, we have the uniform in [0; S] convergence

�q
(n) ! �q; (9.3)

in the following sense: each component �qi; i 2 N , of �q is either a �nite Lipschitz continuous

function or �qi(s) � �1. (The latter is simply the convention for the case when �q
(n)
i (0)!

�1, implying by (9.2) that �q
(n)
i (s) ! �1 uniformly on s 2 [0; S].) Clearly, we have:

�q�(s) = maxi �qi(s); s 2 [0; S], and �q�(0) = 0.

It is easy to see that

lim inf
n!1

��1
n [ �J

(n)

t
(n)
2

� �J
(n)

t
(n)
1

] � JS(�f; �g): (9.4)

Indeed, �rst, we can establish (9.4) for any piece-wise linearization of (�f; �g), using convexity
of the rate functions L(f)(�) and L(g)(�), along with the fact that n�=n = o(n�=n) as n!1;
and then observe that such piece-wise linearizations can have the cost arbitrarily close to
JS(�f; �g). (The argument here is similar to that in the proof of (8.3).)

The 6-tuple (�q; �q�; �f; �
bf; �g; �bg) constructed above is what we will call a local uid

sample path (LFSP). In what follows, we restrict ourselves to the subset N 0 of those i for
which �qi(0) is �nite, and simply exclude all components i 62 N 0 from consideration. This
in particular means that we consider V(N

0) in place of V, and exclude i 62 N 0 from the
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de�nition of the cost Js(�f; �g). (If the set N nN 0 of ows with �qi(0) = �1 is non-empty,
the LFSP describes the behavior of the system in a time interval where ows i 2 N n N 0

cannot \compete for service" with ows i 2 N 0. This means that, in any slot, the EXP
scheduling rule will pick for service a ow i 2 N 0 as long as at least one of these ows can be
served at non-zero rate in this slot.) However, to avoid clogging notation, and without loss
of generality, let us assume that N 0 = N . The following lemma describes the basic dynamics
of an LFSP.

Lemma 9.1 For any LFSP, for almost all s 2 [0; S], the following (proper) derivatives exist
and are �nite:

�(s)
:
=

d

ds
�f(s); (s)

:
=

d

ds
�g(s); (9.5)

�(s)
:
=

d

ds
�
bf(s); (9.6)

d

ds
�q(s);

d

ds
�q�(s);

d

ds
�bg(s); (9.7)

and, moreover, the following relations hold:

d

ds
�q(s) = a� [�(s)� �(s)]; (9.8)

�q�(s) = max
i

�qi(s); (9.9)

d

ds
�q�(s) =

d

ds
�qi(s) for each i such that �qi(s) = �q�(s); (9.10)

�i(s) =
X
m

�mi
d

ds
�bgmi(s); 8i; (9.11)

m(s) =
X
i

d

ds
�bgmi(s); 8m; (9.12)

�(s) 2 arg max
v2V(s)

e�q(s)+b � v: (9.13)

Proof. Consider a pre-limit sequence of functions (�q
(n); �q

(n)
� ; �f

(n); � bf (n)
; �g

(n); �bg(n)),
all de�ned in [0; S], uniformly converging to (�q; �q�; �f; �

bf; �g; �bg). (Such sequence exists by
(9.2) and (9.3) in the LFSP de�nition. Recall that we only consider ows i 2 N 0 for which

�qi(�) are �nite, and we assumeN
0 = N to simplify notation.) The derivatives (9.5)-(9.7) exist

a.e. because all functions are Lipschitz. Relations (9.8), (9.11), (9.12) (their integral forms,
to be precise) are a simple consequence of the corresponding relations (4.2), (4.4) and (4.3)
for the pre-limit functions; (9.9) follows from the limit version of (9.1). Almost all s are such
that all derivatives (d=ds)�qi(s) and (d=ds)�q�(s) exist, and for such s relation (9.10) must
hold. To prove the key relation (9.13), consider the behavior of �q in a small interval [s; s+Æ].

For the unscaled process, this corresponds to the interval [nt
(n)
1 +n�ns; nt

(n)
1 +n�ns+n�nÆ].

(Its length n�nÆ is of the order n�.) Setting t = nt
(n)
1 + �ns as n ! 1, it is easy to see
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(analogously to the argument in Section 4.3, p. 198, of [10]) that the ratios of exp(�) terms
(for di�erent i) in EXP rule de�nition (3.6) converge to the ratios of the numbers e�qi(s)+bi .

This means that, if Æ is small enough, the unscaled process in [nt
(n)
1 +n�ns; nt

(n)
1 +n�ns+n�nÆ]

is such that at any time when channel state is m, only ows i 2 argmax�mi e
�qi(s)+bi can be

chosen for service. This easily implies (9.13); we omit details which are almost identical to
those in the proof of Lemma 5(ii) in [14].

The time points s 2 [0; S] for which the derivatives (9.5)-(9.7) exist and relations (9.8)-
(9.13) hold, are called regular. According to Lemma 9.1, almost all points in [0; S] are regular.
In what follows, we adopt the convention that when we write any expression or condition
involving any of the derivatives (9.5)-(9.7) at point s, we always mean that it holds under
the additional condition that s is regular, even if we do not state this explicitly.

The simple property formulated in the next lemma is nevertheless very important for our
analysis. It says that if the derivative of the cost Js(�f; �g) at some point s is small enough,
then �q�(s) must decrease at that point. Intuitively, this is because small J

0
s(�f; �g) implies

that the instantaneous input rates �f
0
i(s) are close to the average input rates ��i and the

\instantaneous distribution of channel states" �g
0(s) is close to the stationary distribution

�; therefore, instantaneously, we have a \non-overloaded" system, in which the queues have
a \tendency" to decrease.

Lemma 9.2 There exist �xed constants �1 > 0 and Æ1 > 0 such that the following holds: at
(almost) any time s 2 [0; S],

d

ds
Js(�f; �g) � �1 implies

d

ds
�q�(s) � �Æ1: (9.14)

Proof. Let �� be a stochastic matrix such that v� = v(��), where v� is the vector (on
the outer boundary of V ) from the de�nition of b. (That is, (3.4) holds for v� and ��.) Let
us denote by N� the subset of those i in N for which �qi(s) = �q�(s). Consider a �xed state
m, such that m(s) > 0, and denote �mi(s) = �bg0mi(s)=m(s). Then, using an argument
analogous to that in [10] (at the end of Section 4.3), we can establish the following fact:X

i2N�

�mi(s) �
X
i2N�

��mi;

and therefore, since the value of ebi�mi is the same for all i such that ��mi > 0 (because eb is
the outer normal to V at v�, also see [10]),X

i2N�

ebi�mi(s)�
m
i �

X
i2N�

ebi��mi�
m
i : (9.15)

Now, we can proceed with the proof of the lemma statement. Small d
ds
Js(�f; �g) implies

that �(s) is close to ��, and (s) is close to �. Therefore, uniformly on all suÆciently small
values of the cost derivative, we have:

�(s) < ��� < v�; for some �xed vector ��� close to ��;
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and (summing up (9.15), weighted by m(s), over m)X
i2N�

ebi�i(s) �
X
i2N�

ebiv�i � �3 for some �xed small �3 > 0:

This means that, for any �xed �4 > 0, uniformly on all suÆciently small values of d
ds
Js(�f; �g),X

i2N�

ebi [�i(s)� �i(s)] �
X
i2N�

ebi[���i � v�i ] + �4 < 0:

Using the fact that at the regular point s we have �q
0
�(s) = �q

0
i(s) = ai(�i(s)� �i(s)) for all

i 2 N�, the lemma statement follows.

Lemma 9.3 There exist �xed constants �2 > 0 and Æ2 > 0 such that the following holds for
any LFSP:

JS(�f; �g)� J0(�f; �g) � �2S implies �q�(S)� �q�(0) � �Æ2S: (9.16)

Proof. Let us pick positive �2 < �1. (Constants �1 and Æ1 are those from Lemma 9.2.)
Denote by B1 the subset of s 2 [0; S] where J 0s(�f; �g) � �2, and let B2 = [0; S] nB1. These
sets are Lebesgue measurable, with the Lebesgue measure �(B1) � (�2=�1)S. Obviously,Z

B1

�q
0
�(s)ds � `

�2
�1
S; (9.17)

where ` > 0 is the Lipschitz constant for �q�(�). From Lemma 9.2 and bound �(B2) �
[1� (�2=�1)]S, we have Z

B2

�q
0
�(t) � �Æ1S[1� (�2=�1)]: (9.18)

Summing up (9.17) and (9.18), we obtain

�q�(S)� �q�(0) � �Æ1S[1� (�2=�1)] + `
�2
�1
S: (9.19)

Choosing any Æ2 < Æ1 and suÆciently small �2, we complete the proof.

10 Proof of Theorem 8.7

Let T > 0 be �xed. Consider a GSFP  such that min[0;T ] q�(t) > 0. Let us �x constant
positive �3 < �2 (this �2 and Æ2 are those from Lemma 9.3), and assume that

�JT � �J0 � �3T:

Let us �x arbitrary S > 0, and for each n consider the set of non-overlapping subintervals
of (t; t + T ], having the form (h; h + d] and constructed as follows. The left boundary h
of the �rst interval is h = 0 and the length is d = S[�q(n)(h)]�n��1. The second interval is
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obtained by \resetting" h to h + d, and so on. As soon as we obtain an interval with the
right boundary being greater than T , we do not consider this last interval, and stop iterating.
Choose the subset of those subintervals, for which we have

�J
(n)
h+d � �J

(n)
h � �2d:

We call the chosen set of intervals A2, and their union B2 � (0; T ]. (Both A2 and B2 depend
on n.) We also denote B1 = (0; T ] nB2.

The following property holds: for all suÆciently large n, for all intervals (h; h+d] 2 A2,
we have

~q(n)� (h+ d)� ~q(n)� (h) � �(1=2)Æ2d: (10.1)

Indeed, if this were not true, we could pick one violating interval [h; h+ d] for each n (let's

call this interval [t
(n)
1 ; t

(n)
2 ]), and then choose a subsequence of such intervals, which leads to

an LFSP, violating Lemma 9.3.

Now, we can essentially repeat the argument of the proof of Lemma 9.3, but look at
increments rather than derivatives. Namely, for all large n, the Lebesgue measure of B1 is
upper bounded by C2[2�3=�2]T , and the total increment of ~q

(n)
� (�) over the set B1 is upper

bounded by C3[2�3=�2]T , where C2 and C3 are constants. From property (10.1) we obtain

that the total increment of ~q
(n)
� (�) over the set B2 is upper bounded by �Æ2Tf1�C3[2�3=�2]g.

Choosing �3 small enough and taking the limit as n!1, we see that q�(T )� q�(0) � �Æ3T
for suÆciently small �xed Æ3 > 0. (Compare to (9.19).)

Thus, we have established the existence of �3 > 0 and Æ3 > 0 such that for any T > 0 and
any GFSP with q�(t) not hitting 0 in [0; T ], condition �JT � �J0 � �3T implies q�(T )� q�(0) �
�Æ3T . Then the statement of Theorem 8.7 follows.

11 Construction of an LFSP from a \low cost" GFSP

In this section we start working towards the proof of Theorem 3.2(iii). Namely, we will show
that if we have a GFSP  such that q�(0) = 0 (which is equivalent to q(0) = 0) and q�(T ) = 1
for some �nite T > 0, and its re�ned cost �JT = J��� < 1, then we can construct an LFSP
with the \unit cost of raising q�" being at most J��� + �, with arbitrarily small � > 0.

Suppose such a GFSP and arbitrary � > 0 are �xed. Then there exists a time point
� 2 (0; T ) such that q�(�) > 0, q0�(�) > 0, �J 0� > 0, and

�J 0�
q0�(�)

< J��� + � :

This means that we can �nd a �nite interval [t1; t2] (containing � in its interior - but this
fact will not be important for our purposes) such that 0 < t1 < t2 < T , q�(t) > q�(t1) > 0
for all t 2 (t1; t2], and �nally

�Jt2 � �Jt1
q�(t2)� q�(t1)

< J��� + 2�: (11.1)
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Let us �x arbitrary S > 0. We claim that for every suÆciently large n, we can �nd an
interval [t

(n)
1 ; t

(n)
2 ] within [t1; t2], satisfying the following conditions:

t
(n)
2 � t

(n)
1 = S[�q(n)(t

(n)
1 )]�n��1 � S�n;

~q(n)� (t
(n)
2 )� ~q(n)� (t

(n)
1 ) > 0;

�J
(n)

t
(n)
2

� �J
(n)

t
(n)
1

~q
(n)
� (t

(n)
2 )� ~q

(n)
� (t

(n)
1 )

< J��� + 3�: (11.2)

To show this, we use essentially the same construction as in the proof of Theorem 8.7 in
Section 10. Namely, we subdivide the interval [t1; t2], for each n, as follows. The left
boundary h of the �rst interval is h = t1 and the length is d = S[�q(n)(h)]�n��1. The second
interval is obtained by \resetting" h to h + d, and so on. As soon as we obtain an interval
with the right boundary being greater than t2, we do not consider this last interval, and stop
iterating. It is easy to see that one of the constructed intervals must satisfy the conditions
speci�ed above, because otherwise (11.1) could not hold.

For each n let us pick the interval constructed just above, and then choose a subsequence
of them such that, for some �xed �1 2 [t1; t2], we have t

(n)
1 ! �1 (and then t

(n)
2 ! �1 as well).

Then, we can choose a further subsequence such that (�f
(n); � bf (n)

; �g
(n); �bg(n); �q(n)� ; �q

(n))
converges to an LFSP (�f; � bf; �g; �bg; �q�; �q), in the sense speci�ed in Section 9. In addition,
we obviously have �q�(S)� �q�(0) � 0. Recall that S > 0 is a constant which can be chosen
arbitrarily. This means that we can construct the above LFSP in an arbitrarily long time
interval [0; S].

From Lemma 9.3, there exists �3 > 0, such that

JS(�f; �g)� J0(�f; �g) � �3S: (11.3)

This and the uniform on n bound (11.2) imply that for some �xed �4 > 0 we have

�q�(S)� �q�(0) � �4S: (11.4)

Then, (11.2) implies the key cost estimate:

JS(�f; �g)� J0(�f; �g)

�q�(S)� �q�(0)
� J��� + 3�: (11.5)

Since both �q�(s) and Js(�f; �g) are Lipschitz, for some �5 > 0, we have the upper bounds
complementing (11.3) and (11.4):

�q�(S)� �q�(0) � �5S; JS(�f; �g)� J0(�f; �g) � �5S: (11.6)
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12 Proof of Theorem 3.2(iii)1

To prove (3.9) we need to show that J�� in (3.8) (de�ned via GFSPs in (8.7)), which we
know is no greater than J�, is in fact equal to J�. Recall that J�� is the in�mum of re�ned
costs of those GFSPs taking q�(t) from 0 to 1.

Thus, it will suÆce to show that if we have a GFSP  , as de�ned in Section 11, with
re�ned cost �JT = J��� < 1, taking q�(t) from 0 to 1 in interval [0; T ], then J��� � J�.
Consider such a GFSP. From the construction and estimates of Section 11 we have the
following

Assertion 1. For an arbitrarily large S > 0, and arbitrarily small � > 0, we can
construct an LFSP on the time interval [0; S], such that bounds (11.4) (for some �xed �4 > 0)
and (11.5) hold. (The latter bound basically says that, for the LFSP, the \unit cost of raising

�q�(s)" is close to J���.)

Now, for a general LFSP, consider the following function of its �q-state, analogous to
that in [15] (section 9.2):

	(�q) =
X
i

1

ai
e�qi+bi: (12.1)

We will also use its logarithm:
�(�q) = log	(�q): (12.2)

By convention, these de�nitions include the cases when some of the components �qi = �1.
In particular, if some of the queues i are not included in the LFSP (see LFSP de�nition),
then those i are not included in the summation, which is equivalent to assuming �qi = �1.

The function �(�q) uniformly \approximates" �q� in the sense that, k�(�q)� �q�k � �
for some �xed � > 0. Combining this fact with Assertion 1, in which we choose S to be
suÆciently large, we obtain

Assertion 2. For an arbitrarily small � > 0, there exists an LFSP on a time interval
[0; S], such that the following bounds hold (with some �4 > 0):

�(�q�(S))� �(�q�(0)) � (�4=2)S; (12.3)

JS(�f; �g)� J0(�f; �g)

�(�q�(S))� �(�q�(0))
� J��� + 4�: (12.4)

Since � in Assertion 2 can be chosen arbitrarily small, to prove J��� � J�, it suÆces to
show that the LHS of (12.4) is � J�. We have

JS(�f; �g)� J0(�f; �g)

�(�q�(S))� �(�q�(0))
�

R
B[L(f)(�(s)) + L(g)((s))]dsR

B[(d=ds)�(�q(s))]ds
; (12.5)

1In the original version of the paper (see also [16]), the proof in this section was given for the special case
of two ows. The current - general case - proof of Theorem 3.2(iii) was added during Dec. 2007 revision,
and was motivated in part by Lemma 4 in the more recent paper [17].
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where B is the subset of regular time points s within [0; S], such that (d=ds)�(�q(s)) > 0.
(Regularity of point s means that derivatives of all components of the LFSP exists as well
as (d=ds)�(�q(s)) > 0. Almost all points s are regular w.r.t. Lebesgue measure, and the set
B is Lebesgue measurable.) The RHS of (12.5) is lower bounded by

inf
s2B

L(f)(�(s)) + L(g)((s))

(d=ds)�(�q(s))
:

Notice that the condition (d=ds)�(�q(s)) > 0 (or, equivalently, (d=ds)	(�q(s)) > 0) at a
regular point, implies that �(s) and (s) must be such that �(s) 62 V(s). Then, the following
Lemma 12.1 completes the proof of Theorem 3.2(iii).

Lemma 12.1 For any LFSP, at any regular point s 2 B,

L(f)(�(s)) + L(g)((s))

(d=ds)�(�q(s))
� J�: (12.6)

Proof of Lemma 12.1 is given later in this section, because it in turn follows from
Lemma 12.2, given next. The meaning of Lemma 12.2 is analogous to that of Lemma 4 in
[17]. (Paper [17] considers FSPs under MaxWeight scheduling rule, and the corresponding
potential function 	 of the form

P
i q

�+1
i with � > 0.) Namely, it says the following: if �(s)

and (s) in (12.6) are �xed and we can choose �q(s) resulting in the largest derivative of
(d=ds)�(�q(s)) (and then the smallest LHS in (12.6)), among those �q(s) with a given value
of �(�q(s)), then an optimal �q(s) is such that it leads to a simple (linear) trajectory. This
then allows us to lower bound the LHS of (12.6) by the unit cost of a simple trajectory,
which is at least J� (by the de�nition of J�).

We remark that the proof of Lemma 12.2, although related to, is di�erent from that
of Lemma 4 in [17], even besides the fact that our potential function is di�erent. More
important, our proof does not require the region V to be necessarily polyhedral. Non-
polyhedral rate regions arise, for example, in many models of scheduling in wireless systems.

Lemma 12.2 Suppose vectors � and , such that � 62 V, are �xed. Consider the following
auxiliary optimization problem:

max
�q

min
v2V

X
i

1

ai
e�qi+bi [ai(�i � vi)]; (12.7)

over vectors �q with components �1 � �qi <1, subject to the constraint

	(�q) � A; where A > 0 is a �xed constant: (12.8)

(The min in (12.7) is nothing else but the time derivative (d=ds)	(�q(s)), given �q(s) = �q.)
A solution �q to (12.7)-(12.8) always exists, because the set of vectors e�q+b satisfying (12.8)
is compact. Then:
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(i) There exists ` > 0, such that any solution �q to (12.7)-(12.8) has the following structure.
There exists

� 2 argmax
v2V

e�q+b � v; (12.9)

such that
ai(�i � �i) = `; if e�qi > 0; (12.10)

and ai(�i � �i) � `, otherwise.

Consequently,
(ii) the value of problem (12.7) is A`,
(iii) there exists a simple (linear) trajectory (see de�nition in Section 6.1) with the unit cost
equal P

i2N 0 Li(�i) + L(g)()

`
� J�; (12.11)

where N 0 is the subset of i for which �qi > �1, for a solution �q to (12.7)-(12.8).

Proof of Lemma 12.2. If we change variables, e�qi+bi = yi, problem (12.7)-(12.8) can
be rewritten as follows

max
y2IRN

min
v2V

X
i

yi(�i � vi) (12.12)

subject to X
i

1

ai
yi � A; (12.13)

yi � 0; 8i: (12.14)

Note the following properties of the function

H(y) = max
v2V

y � v; y 2 IRN :

It is convex, because it is the Legendre transform of the indicator function of convex set
V (see [9]). Or, it is easy to see directly that the function H(y) is the maximum of linear
functions y � v; y 2 IRN , with parameters v 2 V. Also, a vector � is a subgradient of H at
point y if and only if � 2 argmaxv2V y � v.

The min in (12.12) is then the concave function Ĥ(y) � y � ��H(y), and thus we have
the convex problem

max
y2IRN

Ĥ(y) (12.15)

subject to (12.13)-(12.14). The Lagrangian for this problem is

Ĥ(y)� `(
X
i

yi=ai � A) +
X
i

�iyi;

where ` � 0 and �i � 0 are Lagrange multipliers. For any optimal solution y� of problem
(12.15)-(12.13)-(12.14), there exist such �xed ` and �i's, for which the zero vector is a
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supergradient of the Lagrangian at point y�, and moreover (recall properties of H(y)) this
supergradient must have form �� �+ (�`=a1 + �1; : : : ;�`=aN + �N) = 0 for some

� 2 argmax
v2V

y� � v:

Fixing such �, for each i we have

�i � �i � `=ai + �i = 0:

We see that ` must be positive (because otherwise � � �), and �i = 0 if y�i > 0 by
complimentary slackness. This completes the proof of statement (i), except we need to show
uniqueness of ` across all possible optimal points y�; the uniqueness follows from the fact
that the value of problem (12.12)-(12.14) is

X
i

y�i (�i � �i) =
X

i: y�i >0

1

ai
y�i ai(�i � �i) = A`:

Thus, both (i) and (ii) are proved. To prove (iii), we pick any solution �q to (12.7)-(12.8).
Then, given conditions (12.9) and (12.10), the construction of a simple path in Section 6.1
applies. This in turn implies the inequality (12.11), by the J� de�nition.

Proof of Lemma 12.1. If we denote 	(�q(s)) = A, then, according to Lemma 12.2(ii),
(d=ds)	(�q(s)) � A`, and then (d=ds)�(�q(s)) � `. This, along with (12.11), gives (12.6).
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