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ASYMPTOTIC BEHAVIOR OF THE STATIONARY DISTRIBUTION FOR
A CLOSED QUEUEING SYSTEM

A. L. Stolyar UDC 621.395.74:519.27

We consider a closed queueing system consisting of M identical servers with fixed unit service time. The number of
customers is fixed and equal to N. Each served customer is instantaneously routed with equal probability to one of
M servers in the system (or is enqueued if the server is busy). An asymprotic result is proved for the stationary
distribution of the queueing process as N, M - %, NIM = v = const, and also a result on deterministic approxima-
tion of the process on a finite time interval

L. INTRODUCTION

Throughput analysis of computing systems and networks often involves queueing system models for which explicit
expressions of the operating characteristics are not readily derivable. If the system is large, numerical analysis is also quite
complex, and it is therefore natural to investigate the asymptotic behavior of the characteristics of such systems with system
size increasing to infinity. y

The queueing system considered in this paper models a real-life situation. A multiprocessor computing system consists

processed in memory in one cycle, which in turn depends on the probability (in the stationary mode) that the request occupies
one memory module (by symmetry, this may be any of the modules). The distribution of the waiting time to receive an answer
10 a request also depends on the distribution of the number of requests being processed and awaiting processing by some fixed
memory module,

Other interpretations of the model are also possible. For example, the model may comprise N user terminals in a
computer network and M host computers processing their requests, etc.

Statement of the Problem

We consider a symmetric closed queueing system with M servers. The number of customers in the system is fixed and
equal N. The service time on each server is fixed and equal 1, and each server has infinitely many waiting places in its queue.
At time n = 0, the customers are arbitrarily allocated 1o servers and service still has not begun. Each customer leaving a

functions as follows. Let the state at time n be given. Extract one customer from each nonempty server, and then distribute all
the extracted customers with €qual probability between the servers. The result is the state of the system at time n + 1, and so
on. This interpretation of the process is the most useful for our purposes.
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Let pN-M = (pNM),_, be the distribution of a random number of customers on some designated server (say, the first
server) in the stationary mode for fixed N and M. It is required to find the asymptotic behavior of the distribution pNM as N,
M=o NM-=v >0

The problem of finding the distribution pN'M has b-en considered by many autnors, and a fairly comprehensive
bibliography can be found in [1, 2]. So far, however, no explicit expression has been obtained for pNM for arbitrary N, M.
Most authors propose heuristic formulas for estimating the quantity (1 — p,NM), which is of practical interest. In [3] it is also
suggested from heuristic considerations that

pYM—p. N. M=o, NIM—-+, (1.1)

where the distribution p is specified explicitly and convergence is coordinatewise.

In this paper, we provide a rigorous proof of a stronger proposition (Theorem 1), from which (1.1) is obtained as a
corollary. As an intermediate result, Theorem 2 supplies a deterministic approximation of the stochastic queueing process on
a finite time interval. The method used in the proof of Theorem 1 is also applicable to the analysis of other, more complex
queueing systems and networks (see [4]) and is therefore of independent interest. '

2. THE MAIN RESULT ON THE ASYMPTOTIC BEHAVIOR OF THE STATIONARY DISTRIBUTION.
OUTLINE OF THE PROOF.
DETERMINISTIC APPROXIMATION ON A FINITE TIME INTERVAL

In what follows, we assume for simplicity that the system is identified by a single parameter N, and that M = M(N) is
a function of N such that NM(N) = v = const > Q0 as N = .

Let N (and thus also M = M(N)) be fixed. Denote by M;N(n), i = 0, the total number of servers that are occupied at
the moment n, n = 0, by precisely i customers and let

D¥(n)=MX(n)/M i=0, n>0, (2.1)

i.e., D;N(n) is the proportion of servers occupied by precisely i customers at the moment n. Note that for any n = 0 with
probability 1

D¥(n)=0. i>N; Z.D‘"(n):s'[; Z ED,”(H}—%. (2.2)

temil e

The sequence of (infinite-dimensional) vectors DN = (DN(n)), .o, where DN(n) = (D,N(n));,,, form a Markov chain with a
finite (by (2.1) and (2.2)) state set
S'\.’={I=(I-)ibaeﬂar-ru-mifiu- me&Z.,;

z,=0. >N, Zl':l-i; Z, iz, = %} (2.3)

1=0 [T ]

It is easy to see that the finite Markov chain DN is ergodic. Thus, it has a stationary distribution QN = {QN(x),
x € SN} To the distribution QN we associate the probability measure QN defined on a measurable space (E, &):

"@B= Y @ Bes, @24)
- =zeBnsN .

where E={z€R>|z,20, i>0, Z z,=1, Efx,-sx-.},\‘-=sup N/M(N). N=1,,and & is the o-algebra generated by the metric
L]

ie=g

d(z,yJ=£———-Jz',;y'| ., z,yEE.
i =

The measure QN can be interpreted as ergodic distribution of the process DN, treated as a process with values in (E, #),
because SN C E, ¥N.

Denote by 6°=(8,") .50, 0<p<1.the probability distribution on the set Z_=(0. 1. 2. . J. 6,20, i=0, Zé.“= (- such

om0

that its generating function F(z)= Z,é.":', [2]< 1. satisfies the equation

-
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F(2)=[(F(z)=F(0))/z+F (0) Je=

whenes F(2) = (1=p) (= 1)e= '+ (z=0="=5).

: E ) ]
Note trat as a numerical sequence <’ € R®. Let

; p’
mip)= 2 b =p+——  (<p<i.
; P = '

and by p(#) denote the inverse of the function u(p):
P(p) =1+p—y1+u®, O<p<os.
THEOREM 1. As N -+ o,
ON .i_ QN"’H

w
where Q), 0 < p < 1, is the Dirac measure concentrated at the point x = &°, Q,{8#} = 1. (Here and in what follows, —
denotes weak convergence.)

If XN(n) is the random number of customers on the first server at the moment n for a fixed N, and pN = (pN).,, is
the ergodic distribution of XN(n), i.e.,
p" =lim P(X"(n)=i), =0,

L]

then by symmetry of the servers

j Ty do”:p‘“, [:30

f 3
w

By Theorem 1, Q"—Q,.,. Now, since x; is a continuous function of x € E,

limp;¥ = ,[zf dQuvy =6, =0,
Newos E
Thus, Theorem 1 leads to

COROLLARY 1. For N = o, pN = 80(),

We introduce some notation. Let

A ={26R"’|‘x(20. i=0, ix,:l},

fe=g

A= {zEA l 2 i.‘r:.-v}; A'cEcd,

Each element x € A may be interpreted as a distribution on the set Z,, where x; is the measure of the number
i € Z,. Then each element x € A¥ may be regarded as a distribution on Z, with mean v. On the set A define a standard
stochastic order relation, specifically, <y, z, y€4, if

i < Z y;, =0,

Jom i jemi

Let U and W be random variables with values in Z,,and u = (y;);59 and W = (w,),, their distributions. Then, by
definition, U<W. if u<w, Let us outline the proof.

The metric space E is complete and separable. Moreover, E is a compact set, whence it follows that the family of
measures {QN} is dense, and therefore (by Prokhorov’s theorem (5]) relatively compact. Then there exists a probability
measure Q on (E, &) such that

. w
Qn. —--O‘ Ni"""'
v

where {Q"x}o.= {0 }. To avoid overcomplicated notation, we assume in what follows that 0>—(Q. The proof of Theorem I
consists of the following propositions.



Proposition 1. The measure Q is concentrated on the set A’ i.e.,
QA7) =t.

Let the transformation 7: A—4 be defined as follows (y = Tx):

(1—'3:0}' RS

é (23)

(1—z)'~ _
+§,Ij+. —(-m—e“‘""’, i=1.

yi=(zn+xs)

It is easy 10 see that:
a) T is continuous on E;
b) the sets E and A are closed relative to T, ie.,
T(EYsE, T(A")sA"

Proposition 2. The transformation T preserves the measure Q, ie.,

Q(T-'B)=Q(B), VBe&.
Proposition 3. For any x € AY,

Trz—6"" n—+oo,
Proposirion 4. The measure Q coincides with Qp(")' ie.,

Qfae™m) =1,
We will show that Propositions 1-3 imply Proposition 4. Consider the set J,={z€A"|d(z,5"")>¢). Then by Proposition
3 and Poincaré recurrence theorem (5, p. 392)
QU.)=0, Ye>0,

whence

Q{6°"}=lim Q(4"\J,,) =1,

heres

QED.
The auxiliary Lemma 5 (see Sec. 6) and uniform continuity of T on E (E is a compact set!) lead to

THEOREM 2. For any integer / > 0 and any ¢ > 0
li P d (D™ (k), T* N (0)=z] =0.
N_lggg [of».‘if;:{ (D7 (k) T°2)) >e| DY (0) =2] =0

This theorem shows that for large N the Markov process (DN(n)), ., is close to the deterministic process (T™X) 20
uniformly in the initial state DN(0) = x € SN on a finite time interval.

3. PROOF OF PROPOSITION 1
Let the following condition hold. There exists a distribution r = (r)i=0 € Aand N. € Z_ such that for all N > N,

pN<r, (3.1)

) <, (32)

it .

Recall that pN is the ergodic distribution of the random number XN of customers on the first server, when N (and therefore
M) is fixed.

324




By (2.3) and (2.4)
E c:z(-— (Q¥-a. s.). (3.3)

te=d

Since NM - v,

Z Z=<v  (Q-as.), (34)

[T

Indeed, for any ¢ > 0, the set Jt’u{zEE | Z ix.-ﬁév‘i'e} is closed. From (3.3) it follows that for all large N, QN(J,") = 1, and

=

therefore Q(J,') = 1. Integrating the expression in the left-hand side of (3. 4), we have

(2‘”' )dQ =‘Z ipy,

==l 1=0

where

14 ‘=I z,dQ =lim I:,dQ” =limp,”, =0,
.N'--- Ne—wen
ie, p = lim pN, N » .
If to each distribution pN we associate a random variable with values in Z, that has this distribution, then the
resulting family of random variables is uniformly integrable by (3.1) and (3.2). Then

2 ip; = hmz ipN=v,

fami ' New T=0

1)

E imd
This and (3.4) give

Z, iz;=v (Q-a.s.).

T4

The last equality proves Proposition 1.

We will show that (3.1) and (32) indeed hold. To this end, construct a queueing process (Z(n)), .o that majorizes each
of the processes (XN(n)),.o for all N greater than some N..

For the sequence (XN(n)), ., we have the following recurrence:

X"(n)u(X"(n-—l)—i}*-l-U,., nz{i,

where (a)* = max{a, 0} and U, is the random number of customers arriving at the first server at the moment n. Lemma 4
(Sec. 6) claims that there exist integers k, N. > 0, and an integer-valued nonnegative random variable V such that for any
N > N. and n > 0, independently of the values of XNG@, Upj=0,..m,

I R (3-5)

and MV < k.
Define the process (Z(n)), > recursively by

Z(n)=max{Z (n—1)—1, k}+V,, n=l,
where {V,, n = 1} are jointly independent random variables,

v |V n=k +1, 1[=0,12,...,
"=lo

otherwise,



d
where = is equality in distribution.
The process (Z(n)),»o is a homogeneous Markov chain, and if r(n) is the distribution of Z(n), then

r{kl+j)—=r, l—ew, j=I, k. (3.6)

Indeed, ergodicity of the embedded Markov chain (Z(kl + j));»¢ is easily established by Mustafa’s criterion [6]. Now,
if we hold the initial values XN(0) = Z(0) = 0 fixed, then the processes (XN(n), DN(n)),0 and (Z(n)),»o can be constructed
by (3.5) on one probability space so that

X¥(n)<Z(n) (a.s.).
Hence it follows that

p¥(n)<r(n), n=0.
Then from pN(n) - pN, n -» = and (3.6) we obtain
pr<r, =1, k.

Thus, for r = rl, condition (3.1) is satisfied. Let us prove (3.2). Let Y(/) = Z(k/ + 1) — k, / = 0, and let T be the stationary
distribution of the process (Y (I) )i>o. The relationship

i, ir'= Z, iF itk

1=l t=0

is obvious and therefore it remains to show that Z iF<<oo,
Denote by

II(z) -2 Fit'y 2],

the generating function of the distribution f, and let

[P

H(z)=2 Fiz', z“W(z)-sZ Fiz'.

tom te=h

Then the stationarity condition of T has the form
M(z)=R(z) +2'W (z) =(R(1) +W(z) ) V (2),
where V(z) is the generating function of V, whose explicit form is known from Lemma 4 (Sec. 6). Hence
W(z)=(R(2)—R(1) V(2))/(V(2) =) =0 (2) /¥ (2).

Given the explicit form of V(z), we can easily verify that @ (z)=(z—1)®(z), ¥ (z) =(z—1) ¥ (z), , where 3(z) and ¥ (z) are
analytical in the neighborhood of 1, and ¥ (1) = 0. Then W'(1 — 0) < =, whence Zif; = II'(1) < =, as required. Q.E.D.

4. PROOF OF PROPOSITION 2

We will show that if B€& is closed then

Q(T-'B)=0Q(B).

B,=J 0.(2),

==B

where O,(x) is an open e-neighborhood of the point x.
By continuity of T, there exists an open set C € & such that

T-Y(B)=C. T(C)=B,. e>0.
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Fix &, @ > 0. Then we can choose N. such that for N > N,

P(d(D"(n+1), Tz) <e|D"(n)=z)=1—q (4.2)

uniformly in x € SN C E (see Sec. 6, Lemma 5. o
Secing that [B,,] is closed and C is open, Q*—(Q, where QN is the stationary distribution of the process (DN(n))
we obtain using (4.2)

Q([Bae)) = 1im 0" ([Bee)) > Tim Q™ (C) (1 — @) > 1im Q™ (O)(1 — ) > Q(C) (1 — ) > Q(T-'B) (1 — 1),

nzge

Since ¢ and a are arbitrary, and [B,,] { B, ¢ | 0, we obtain

Q(T-'B)<Q(B). (43)

But B, is closed and B, t B, ¢ § 0. Replacing B with B, in (4.3) and passing to the limit as ¢ | 0, we obtain
Q(T-'B)<Q(B). (4.4

From (4.3) and (4.4) we obtain (4.1).
Since (E, &) is a complete separable metric space with the o-algebra generated by open sets, then for any H € & and
any ¢ > O there exists a compact set B € H such that Q(H\B) < e. Hence we easily obtain that Q(T-!H) = Q(H).

5. PROOF OF PROPOSITION 3

In this section, we will first prove Proposition 4 using only Propositions 1 and 2, and then prove Proposition 3. The
proof of Proposition 4 is of independent interest (see Remark 2), and moreover it contains some auxiliary definitions and
constructions that are used in the proof of Proposition 3.

The transformation T may be expressed in generating functions, i.e., if F(z) = Z:c‘z", |z] <1 is the generating function

of x, x € A, and (TF)(z) is the generating function of Tx, then from (2.5) we have
(TF) (z)=[ (F(2)~F (0)}/z+F (0) Je-t-rrotts-n,
Consider (also on A) the transformation T, 0 = p < 1, which is expressible in generating functibns as
(T,F) (z) =[(F(2) =F(0))/z+F (0)] e=o"*-*,

where F and T F are the generating functions of x and Tox, respectively. It is easy to see that the transformation T, indeed
maps A to A. It has been well studied in queueing theory, because it describes the embedded Markov chain for the M [D]1
system with traffic p. We know (see, e.g., [7]) that the transformation T, has in A a unique fixed point x = &2, T, = &,
which is the definition of & in Sec. 2. Here 62 = 1 — p. Moreover, for any x € A,

T,'z—+8°, n—+oo. (CRY)
Since Tx = T; _xp% the fixed point & of the transformation T, is a fixed point for T:
Té=8°. O<p<l. (5.2)

It is easy to see that the distribution &° and also the transformations T and T, have the following properties of
monotonicity and continuity:

0:<py = 57 < 6", (5-3)
60|_>60:. Pr=p:; (54)
forallx,y € A:
z<y=>Tz<Ty, (5.5)
(z<y. l=z,<p)=Tz<T,y. (5.6)

Remark 1. Using (5.2), we can casily show that the transformation T has precisely one fixed point on the set AY,
0 = v < =, which is 8¢), Since A” is closed relative to T, we can naturally expect Proposition 3 to be true.
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Proof of Proposition 4. By Proposition 1, Q(A”) = 1. Moreover, A” is closed relative to T. We use the notation
x(n) = (xi(n))jo = T°x. From the explicit expressions (2.5) we can easily see that if x € A, then

]

z,(k)= (E &, )e"‘. keZ,. (5.7

Pel}

For any x € A", we have by Chebyshev inequality
Fix k = v and ¢ > 0 such that

From (5.7) we see that for any x € A”,

1—-:.(n+k)<1_ge-*=q<l. n=0,
Then from (5.6) it follows that

T**z=T"T'z < T,"T*z, n>0. (5.8)
But by (5.1)
TAT'2—+8" oo, (5.9)

Recalling that T is a transformation preserving the measure Q, we obtain from (5-8) and (5.9), using the Poincaré recurrence
theorem [5, p. 392],

QM) =1, Gr={zed"|2<").

Let po = min{y [0 s 7 < 1, Q(G") = 1}. The minimum is attained, which follows from (5.3) and (5.4), and therefore
Q(G’) = 1. If p. < p(v), then G’* = @, which is impossible. Therefore p. 2 p(v). We will show that p. = p(v).

Assume that this is not so: p. > p(v). From (5.5) and (5.2) it follows that G”* is closed relative to T. From the
explicit expressions (2.5) we see that for any n, Xg(n) depends (continuously) only on Xg» « Xy, and we can show that in the
region

izjyzaﬂ'n 0gagn}
j=0

=0

Ghr = {(@)is €10, ]

Xo(n) as a function of (xy, ..., X,) attains a strict minimum d¢P* for z;=6¢+, i=0, n. This means that for any integer / > 0, ¢ >
0, there exists 8 > O such that ifx € G and ¥y € (T~!x) N GP+, then |za—0,°|<B implies |y—8°|<a, i=0, (., Take / so that

I

Zl i§P>vte,, e,>0.

-
tem0

(This can be done, because Z . =p(p.) > u(p(v)) =v.) Then set @ = £,/i2 and select an appropriate 8 > 0. Now, if

x € G+ and |z,—8,|<B, then for anyy € (T"x) N G,

Z iy, ;2 (88 —a)>v,

i=0 =0

ie, (T™x) N G+ = @&. Hence it follows that for any x € G#* we have xo(f) > (1 = p.) + B, and so
1=z, (l+n)<p.—p, n=0.

Again applying relationships similar to (5.8), (5.9) and the Poincaré theorem, we obtain Q(G*~*)=| , which contradicts the
definition of p.. Thus, p. = p(v), and therefore Q(GP™) = 1. But the set G*(*) consists precisely of one element 3°(¥),
Therefore Q = Q) QED.
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Proof of Proposition 3. Fix an arbitrary element x € A”. From the proof of Proposition 4 it follows that

lim (1—z,(n)) =p.<1.

s oo

We will show that p. S p(v). Assume that this is not so, p. > p(v). As in the proof of Propositicn 4, we choose an integer
! so that ;
X p-ove, 2.

=

and again for @ = ¢,/12 choose 8 > 0 so that ’
i {[O' 1 —~Pxt ﬂ]} @ G?' = {(stiE;_-fIIy; — &f | <a}l= Hy,

where the continuous function f(yy, ..., Y1) expresses the dependence of Yo()) on (Yo .., ¥p), y = izo € A
For n - « we have lim(1—z,(n) )=p.. and therefore for any y > 0 there exists n. = n.(y) > 0 such that for all n >
fe, (2o(n),. .., z(n))EGP-+T,
Take y so that
0, 1—p.+B]ING+ <k,

(this can be done because H,, is open, G, G*-*' are compact sets, G#+14G™ for ¥ ¢ 0), and choose n. = n.(y). Then for all

1
N Zn. +/ from1 = x4(n) 2 po — Bwe have (xy(n - J), ..., Xe(n - 1)) € H,, whence Z iz, (n— {)_> v which is impossible
1=
because x(n — /) € A”. Thus, for all n > n. + L, 1 = x4(n) < ps — B, which contradicts the definition of p..
Thus, lim(1—z,(n))<p(v). Hence it follows that any subsequence of the sequence (x(n)), o contains a limiting point
Z € A and z<&".
We will show that necessarily z = 80(»), (This will indicate that x(n) - 8°(*).) It suffices to show that for any e > 0

lim sup Z, ix;(n)=0,

me=az0

This in turn follows from a simple fact, which is stated without proof:

Let0 = 7 <1,y € A, §(y) < o, where ;(y}—Ziy.. Then for n - = we have T,y = o7 as well as

tm=y

S(Ty'y)—L(6").

This completes the proof of Proposition 3.

Remark 2. In our proof of Proposition 4, the support of the measure Q is restricted stepwise by the Poincaré lemma
until it shrinks to a point. This proof of Proposition 4 is technically simpler than the approach that first proves Proposition 3
and then applies the Poincaré lemma. A similar situation is also observed for more complex systems (see [4]).

6. AUXILIARY LEMMAS
The following lemmas are of technical interest and are given without proof. (The proofs of Lemmas 1 and 2 are
Obvious. Lemmas 3-5 are proved in [4].) The notation used in Lemmas 1-3 is independent of the notation introduced in Secs.
1-5. .
In what follows, distributions are elements of the set A (see Sec. 2), i.e., infinite sequences r=(z.)ino, 1;=20, i=0. Z

Zi=1. By a¥ = (a7);.o we denote the Poisson distribution with the parameter y > 0:

R S N T
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and by 822 = (8™");5o the binomial distribution with the parameters 1/m, n (m, n € Z_):

g { (nl/il(n=0)1) (/m)" (1=1/m)"~", 0<i=n.

0, i=n.

LEMMA 1. Let p and r be distributions such that

ru.q.n"lr.g P.-&l.'lfh for i=0.

where 0/0 = 0. Then r<p. ;
LEMMA 2. Let 0 < a < f be fixed. Then there exists M such that for m > M and n = am,

fmn<nf,
(The proof uses Lemma 1.)
LEMMA 3. Given are m servers, am of which constitute a distinguished set J; m,am € Z,. bm customers are allocated
once with equal probabilities to all m servers, bm € Z +- Denote by R;, i = 0, the random number of servers in the set J that

are occupied by precisely i customers, and r; = R/(am). Then for Ve, § > 0and W € {1,2,...} uniformly in (a, b, i) € L = e,
1] % [&, &] x {01, .., 1}

M (r() _"uio.
D(r)—0, m-—>c.

The following bound on the rate of convergence of the binomial distribution to Poisson [8] plays a central role in the
proof of the lemma:

|Ca' (M) (1=Aln) "~ —AYfile=*| <A}/n, A>0, i=0, n.

LEMMA 4 (notation from Secs. 2 and 3). The family of Markov processes {(X"(n), D"(n))azo}xez. has the following
property. There exists an integer k > 0 and N. suchthat for N > N., for any n = 0 and for any state of the process at the
moment n,

Ungo® oo c U<V,

where V is the random variable with the generating function
V(z) -:M;V:[e—-u_uau—n_e-u-un]e-nu-n +e-<k-uu[ (l_me_an-:r_:_n?—au_nl_

where 0<a<<{<B, 0<n<1, MV=kp+e-*-1# [(1—7n)p+na—1] <k.
The proof uses Lemmas 2 and 3. %
LEMMA 5 (notation of Sec. 2). For any ¢, a > 0, there is N. such that for N > N.

P(d(D"(n+1), Tz)>e|D" (n) =z)<a, n=0,

uniformly in x € SN,
The proof relies on Lemma 3.

7. DISCUSSION

The method of analysis used in this paper treats the queueing process as a process of proportions, i.e., the state of the
system as a whole at each time moment is defined by the proportions of the elements (out of the total number of system
elements) that occupy various fixed states. (In our case, a system element is a server and the state of an element is the number
of customers at the server.) The process of proportions, regardless of the total number of system elements (in our case M),
takes values in the phase space (SN), whose points are naturally interpreted as probability distributions on the state set (Z,)
of one element. Thus, the processes of proportions corresponding to systems with differens number of elements may be treated
as processes with values in the same phase space (A) — the Space of all probability distributions on the state set of one
clement.

This make it possible to study the asymptotic behavior of the process of proportions when, as in our case, the system
parameters, including the number of elements, increase without bound. Note that the process of proportions is usually mean-
ingful only if it is Markov, which is so if the system being studied has a sufficiently symmetric structure.
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In asymptotic analysis of the process of proportions, we can use the probabilistic interpretation of the points of the
phase space. Thus, in our paper, in the proofs of Propositions 1 and 3, which constitute the main difficulty, we essentially use
the stochastic order relation on the phase Space and the associated monotonicity considerations.

The results of this paper are generalizable to a much more complex queueing system (see [4]). Other gencralizations
are also possible.

I'an deeply grateful to Yu. M. Baryshnikov and L. B. Boguslavskii for numerous useful comments and to a referee for
a number of useful suggalibns.
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