
An infinite server system with general packing constraints

Alexander L. Stolyar
Bell Labs, Alcatel-Lucent
600 Mountain Ave., 2C-322

Murray Hill, NJ 07974
stolyar@research.bell-labs.com

June 1, 2012

Abstract

We consider a service system model primarily motivated by the problem of efficient assignment of
virtual machines to physical host machines in a network cloud, so that the number of occupied hosts is
minimized.

There are multiple input flows of different type customers, with a customer mean service time de-
pending on its type. There is infinite number of servers. A server packing configuration is the vector
k = {ki}, where ki is the number of type i customers the server ”contains”. Packing constraints must be
observed, namely there is a fixed finite set of configurations k that are allowed. Service times of different
customers are independent; after a service completion, each customer leaves its server and the system.
Each new arriving customer is placed for service immediately; it can be placed into a server already
serving other customers (as long as packing constraints are not violated), or into an idle server.

We consider a simple parsimonious real-time algorithm, called Greedy, which attempts to minimize
the increment of the objective function

∑
kX

1+α
k , α > 0, caused by each new assignment; here Xk is

the number of servers in configuration k. (When α is small,
∑
kX

1+α
k approximates the total number∑

kXk of occupied servers.) Our main results show that certain versions of the Greedy algorithm are
asymptotically optimal, in the sense of minimizing

∑
kX

1+α
k in stationary regime, as the input flow

rates grow to infinity. We also show that in the special case when the set of allowed configurations
is determined by vector-packing constraints, Greedy algorithm can work with aggregate configurations
as opposed to exact configurations k, thus reducing computational complexity while preserving the
asymptotic optimality.

1 Introduction

The primary motivation for this work is the following problem arising in cloud computing: how to assign
various types of virtual machines to physical host machines (in a data center) in real time, so that the total
number of host machines in use is minimized. It is very desirable that an assignment algorithm is simple,
does need to know the system parameters, and makes decisions based on the current system state only. (An
excellent overview of this and other resource allocation issues arising in cloud computing can be found in [4].)

A data center (DC) in the “cloud” consists of a number of host machines. Assume that all hosts are same:
each of them possesses the amount Bn > 0 of resource n, where n ∈ {1, 2, . . . , N} is a resource index. (For
example, resource 1 is CPU, resource 2 is memory, etc.) The DC receives requests for virtual machine (VM)
placements; VMs can be of different types i ∈ {1, . . . , I}; a type i VM requires the amounts bi,n > 0 of each
resource n. Several VMs can share the same host, as long as the host’s capacity constraints are not violated;
namely, a host can simultaneously contain a set of VMs given by a vector k = (k1, . . . , kI), where ki is the

1

number of type i VMs, as long as for each resource n∑
i

kibi,n ≤ Bn. (1)

Thus, VMs can be assigned to hosts already containing other VMs, subject to the above “packing” con-
straints. After a certain random sojourn (service) time each VM vacates its host (leaves the system), which
increases the “room” for new arriving VMs to be potentially assigned to the host. A natural problem is to
find a real-time algorithm for assigning VM requests to the hosts, which minimizes (in appropriate sense)
the total number of hosts in use. Clearly, such a scheme will maximize the DC capacity; or, if it leaves a
large number of hosts unoccupied, those hosts can be (at least temporarily) turned off to save energy.

More specifically, the model assumptions that we make are as follows:
(a) The exact nature of ”packing” constraints will not be important – we just assume that the feasible
configuration vectors k (describing feasible sets of VMs that can simultaneously occupy one host) form a
finite set K; and assume monotonicity – if k ∈ K then so is any k′ ≤ k.
(b) There is no limit on the number of hosts that can be used and each new VM is assigned to a host
immediately – so it is an infinite server model, with no blocking or waiting.
(c) Service times of different VMs are independent of each other, even for VMs served simultaneously on the
same host.
(d) We further assume in this paper that the arrival processes of VMs of each type are Poisson and service
time distributions are exponential. These assumptions are not essential and can be much relaxed, as discussed
in Section 8.2.

The basic problem we address in this paper is:

minimize
∑
k

X1+α
k , (2)

where α > 0 is a fixed parameter, and Xk is the (random) number of hosts having configuration k in the
stationary regime. (Clearly, when α is small,

∑
kX

1+α
k approximates the total number

∑
kXk of occupied

hosts.) We consider the Greedy real-time (on-line) VM assignment algorithm, which, roughly speaking, tries
to minimize the increment of the objective function

∑
kX

1+α
k caused by each new assignment. Our main

results show that certain versions of the Greedy algorithm are asymptotically optimal, as the input flow rates
become large or, equivalently, the average number of VMs in the system becomes large. We also show (in
Section 7) that in the special case when feasible configurations are determined by constraints (1), Greedy
algorithm can work with “aggregate configurations” as opposed to exact configurations k, thus reducing
computational complexity while preserving the asymptotic optimality.

1.1 Previous work

Our model is related to the vast literature on the classical stochastic bin packing problems. (For a good
recent review of one-dimensional bin packing see e.g. [2].) In particular, in online stochastic bin packing
problems, random-size items arrive in the system and need to be placed according to an online algorithm
into finite size bins; the items never leave or move between bins; the typical objective is to minimize the
number of occupied bins. A bin packing problem is multi-dimensional, when bins and item sizes are vectors;
the problems with the packing constraints (1) are called multi-dimensional vector packing (see e.g. [1] for
a recent review). Bin packing service systems arise when there is a random in time input flow of random-
sized items (customers), which need to be served by a bin (server) and leave after a random service time;
the server can simultaneously process multiple customers as long as they can simultaneously fit into it; the
customers waiting for service are queued; a typical problem is to determine the maximum throughput under
a given (“packing”) algorithm for assigning customers for service. (See e.g. [3] for a review of this line of
work.) Our model is similar to the latter systems, except there are multiple bins (servers), in fact – infinite
number in our case. Models of this type are more recent (see e.g. [5, 6]). Paper [5] addresses a real-time
VM allocation problem, which in particular includes packing constraints; the approach of [5] is close in

2

spirit to Markov Chain algorithms used in combinatorial optimization. Paper [6] is concerned mostly with
maximizing throughput of a queueing system (where VMs can actually wait for service) with a finite number
of bins.

The asymptotic regime in this paper is such that the input flow rates scale up to infinity. In this respect,
our work is related to the (also vast) literature on queueing systems in the many servers regime. (See e.g. [9]
for an overview. The name “many servers” reflects the fact that the number of servers scales up to infinity
as well, linearly with the input rates; this condition is irrelevant in our case of infinite number of servers.)
In particular, we study fluid limits of our system, obtained by scaling the system state down by the (large)
total number of customers. We note, however, that packing constraints are not present in the previous work
on the many servers regime, to the best of our knowledge.

2 Model and main results

We consider a service system with I input customer flows of different types, indexed by i ∈ {1, 2, . . . , I} ≡ I.
Each flow i is Poisson with rate Λi > 0. Service time of a type i customer is an exponentially distributed
random variable with mean 1/µi. All input flows and customer service times are mutually independent. There
is an infinite number of servers. Each server can potentially serve more than one customer simultaneously,
subject to the following general ”packing” constraints. We say that a vector k = {ki, i ∈ I} with non-
negative integer components is a server configuration, if a server can simultaneously serve a combination
of different type customers given by vector k. The set of all configurations is finite, and is denoted by K̄.
We assume that k ∈ K̄ implies that all ”smaller” configurations k′ ≤ k belong to K̄ as well. Without loss
of generality assume that ei ∈ K̄ for all types i, where ei is the i-th coordinate unit vector (otherwise,
i-customers cannot be served at all). By convention, the (component-wise) zero vector k = 0 belongs to K̄
– this is the configuration of an ”empty” server; we denote by K = K̄ \ {0} the set of configurations not
including the zero configuration.

An important feature of the model is that simultaneous service does not affect the service rates of individual
customers; in other words, the service time of a customer is unaffected by whether or not there are other
customers served simultaneously by the same server. Each arriving customer is immediately placed for
service in one of the servers; it can be ”added” to an empty or non-empty server as long as configuration
feasibility constraint is not violated, i.e. it can be added to any server whose configuration k ∈ K̄ (before
the addition) is such that k + ei ∈ K. When the service of an i-customer by the server in configuration k is
completed, the customer leaves the system and the server’s configuration changes to k − ei. Denote by Xk

the number of servers with configuration k ∈ K. The system state is then the vector X = {Xk, k ∈ K}.

A service discipline (”packing rule”) determines where an arriving customer is placed, as a function of the
current system state X. Under any well-defined service discipline, the system state at time t, X(t), is a
continuous time, countable Markov chain. It is easily seen to be irreducible and positive recurrent; the
positive recurrence follows from the fact that the total number Yi(t) of type i customers in the system is
the process independent of the service discipline, and its stationary distribution is Poisson with mean Λi/µi.
Therefore, the process X(t), t ≥ 0, has a unique stationary distribution.

We are interested in finding a service disciplines minimizing (in a certain sense) the total number of non-
empty servers in the stationary regime. For example, an objective can be

minE
∑
k∈K

X1+α
k (∞), (3)

where α ≥ 0 is a parameter, and X(∞) denotes the random system state in stationary regime. Another
possible objective is

minP{
∑
k∈K

X1+α
k (∞) > C}, (4)

3

where C is a fixed threshold. In both problems, setting α = 0 obviously corresponds to the exact objective of
minimizing the number of servers in use; however, if a good discipline for α > 0 exists, using such discipline
with positive α close to 0 would (hopefully) also produce a good solution for the α = 0 case.

In this paper we consider objectives (3) and (4) with α > 0, and prove the following Greedy service discipline
(or, rather its slight modification, to be precise) is asymptotically optimal as the flows’ input rates become
large.

Definition 1 (Greedy discipline).

1. Integral form (Greedy-I). Define F (x) =
∑
k∈K(1 +α)−1x1+α

k , x ∈ R|K|+ . A type i customer arriving at
time t is added to an available configuration k (with either k = 0 or Xk(t−) > 0) such that k+ ei ∈ K
and the increment F (X(t))−F (X(t−)) is the smallest. (Here X(t−) and X(t) are the states just before
and just after the addition; so that Xk+ei(t) = Xk+ei(t−) + 1 and, unless k = 0, Xk(t) = Xk(t−)− 1.)
The ties are broken according to an arbitrary deterministic rule.

2. Differential form (Greedy-D). For each k ∈ K, denote Wk(x) = (∂/∂xx)F (x) = xαk , x ∈ R|K|+ . A type i
customer arriving at time t is added to an available configuration k (with either k = 0 or Xk(t−) > 0)
such that k + ei ∈ K and the difference Wk+ei(X(t−)) − I{k 6= 0}Wk(X(t−)) is the smallest. (Here
I{·} is the indicator function, equal to 1 when the condition holds and 0 otherwise.) The ties are broken
according to an arbitrary deterministic rule.

In the asymptotic analysis of this paper, the two forms of Greedy algorithm are essentially identical, because
they induce the same dynamics of the system in the “fluid limit”. We will analyze the differential form, as
it is slightly more convenient to work with, and is probably more easily implementable in practice; it should
be clear that all results (along with essentially same proofs) hold for the integral form as well.

Remark. All results will hold for a more general objective function F (x) =
∑
k∈K ckx

1+α
k , with arbitrarily

positive weights ck. The generalization is completely straightforward – we choose to work with ck = (1+α)−1

simply to avoid “carrying” factors ck(1 + α), which clog notation.

We now define the asymptotic regime. Let r →∞ be a positive scaling parameter. (To be specific, assume
that r ≥ 1, and r increases to infinity along a discrete sequence.) Input rates scale linearly with r; namely,
for each r, Λi = λir, where λi are positive parameters. Let Xr(·) be the process associated with system
with parameter r, and Xr(∞) be the (random) system state in the stationary regime. For each i denote by
Y ri (t) ≡

∑
k∈K kiX

r
k(t) the total number of customers of type i. Since arriving customers are taken for service

immediately and their service times are independent (of the rest of the system), the distribution of Y ri (∞)
is Poisson with mean rρi, where ρi ≡ λi/µi. Moreover, Y ri (∞) are independent across i. Since the total
number of occupied servers is no greater than the total number of customers,

∑
kX

r
k(t) ≤ Zr(t) ≡

∑
i Y

r
i (t),

we have a simple upper bound on the total number of occupied servers in steady state,
∑
kX

r
k(∞) ≤ Zr(∞),

where Zr(∞) is a Poisson random variable with mean r
∑
i ρi. Without loss of generality, from now on in

the paper we assume
∑
i ρi = 1. (This is equivalent to rechoosing parameter r to be r

∑
i ρi.)

The fluid scaled process is xr(t) = Xr(t)/r; for any r, xr(t) takes values in (the positive orthant of) Euclidean
space R|K|, where |K| is the cardinality of K. Similarly, yri (t) = Y ri (t)/r and zr(t) = Zr(t)/r. Since∑
k x

r
k(∞) ≤ zr(∞) = Zr(∞)/r, we see that the random variables (

∑
k x

r
k(∞))1+α are uniformly integrable

in r (for any fixed α ≥ 0). This in particular implies that the sequence of distributions of xr(∞) is tight,
and therefore there always exists a limit in distribution xr(∞) =⇒ x(∞), along a subsequence of r. (The
limit depends on the service discipline, of course.) The limit (random) vector x(∞) satisfies the following
conservation laws: ∑

k∈K

kixk(∞) ≡ yi(∞) = ρi, ∀i, (5)

implying, in particular,

zi(∞) ≡
∑
i

yi(∞) ≡
∑
i

ρi = 1. (6)

4

Therefore, the values of x(∞) are confined to the convex compact |K| − I-dimensional polyhedron

X ≡ {x ∈ R|K| | xk ≥ 0, ∀k ∈ K;
∑
k

kixk = ρi, ∀i ∈ I}.

(We will slightly abuse notation by using symbol x for a generic element of X ; while x(∞), and later x(t),
refer to random variables taking values in X .)

The asymptotic regime and the associated basic properties (5) and (6) hold for any service discipline, not
necessarily Greedy-D.

Note that function F (x) with α > 0 is strictly convex on X , and therefore there is the unique optimal point
x∗ minimizing F :

x∗ = arg min
u∈X

F (u). (7)

(Note that, if α = 0, then x∗ is an optimal solution of a linear program and therefore might not be unique.
We do not consider the α = 0 case in this paper.)

Our main results are as follows.
Let α > 0. We prove that, as r →∞, the convergence is distribution xr(∞) =⇒ x∗ holds in two cases:
(a) For the closed system, with the constant number Y ri = ρir of customers of each type, operating under the
Greedy-D discipline. (The exact result is Theorem 2.)
(b) For the original system (as defined above), operating under a slightly modified Greedy-D discipline, called
Greedy-DM. (The exact result is Theorem 12.)
In addition, in the special case when feasible configurations are determined by vector-packing constraints (1),
we prove that essentially same results hold if Greedy algorithm uses quantities Xr

k aggregated over classes of
equivalent configurations, thus reducing the total number of system variables the algorithm needs to maintain.
(The exact results are Theorems 19 and 21.)

2.1 Basic notation and conventions

Standard Euclidean norm of a vector x ∈ Rn is denoted ‖x‖; the distance from vector x to a set U in
a Euclidean space is denoted d(x, U) = infu∈U ‖x − u‖; R+ is the set of real non-negative numbers; the
cardinality of a finite set N is |N |. Symbol→ means ordinary convergence in Rn; =⇒ denotes convergence
in distribution of random variables taking values in Rn, equipped with the Borel σ-algebra; abbreviation
w.p.1 means convergence with probability 1. We often write x(·) to mean the function (or random process)
x(t), t ≥ 0. Abbreviation u.o.c. means uniform on compact sets convergence of functions, with the argument
(usually in [0,∞)) determined by the context. We often write {xk} to mean the vector {xk, k ∈ K}, with
the set of indices K determined by the context.

For a finite set of scalar functions fn(t), t ≥ 0, n ∈ N , a point t is called regular if for any subset N ′ ⊆ N
the proper derivatives

d

dt
max
n∈N ′

fn(t) and
d

dt
min
n∈N ′

fn(t)

exist.

3 Closed system. Greedy-D optimality

In this section we consider a “closed” version of our system. Namely, assume that there is a fixed number
ρir customers of type i (in a system with parameter r); there are no exogenous arrivals into the system –
when a service of a type i customer is completed, the customer immediately has to be placed into a server
for a new service. Service discipline determines where the customer is placed, based on the current system
state.

5

It is easy to see that, for any r, a stationary distribution of the process exists under any given service
discipline, because the process in this case is a finite-state continuous time Markov chain.

The main result of this section is the following

Theorem 2. Consider a sequence of closed systems, indexed by r, and let xr(∞) denote the random state of
the (fluid-scaled) process is a stationary regime, under the Greedy-D discipline with α > 0. Then, as r →∞,

xr(∞) =⇒ x∗,

where x∗ is defined in (7).

To prove the theorem we will need to study the transient behavior of the fluid-scaled process and its limits.

Let M denote the set of pairs (k, i) such that k ∈ K and k − ei ∈ K̄. Each pair (k, i) is associated with the
“edge” (k − ei, k) connecting configurations k − ei and k; often we refer to this edge as (k, i). By “arrival
along the edge (k, i)” we will mean placement of a type i customer into a server configuration k− ei to form
configuration k; similarly, “departure along the edge (k, i)” is a departure of a type i customer from a server
in configuration k, which changes its configuration to k − ei.

For each (k, i) ∈M, consider an independent unit-rate Poisson process Πki(t), t ≥ 0. We have the functional
strong law of large numbers:

1

r
Πki(rt)→ t, u.o.c., w.p.1. (8)

Without loss of generality, assume that the Markov process Xr(·) for each r is driven by the common set
of Poisson processes Πki(·), as follows. For each (k, i) ∈ M, let us denote by Dr

ki(t) the total number of
departures along the edge (k, i) in [0, t]; then we can assume that

Dr
ki(t) = Πki(

∫ t

0

Xr
k(ξ)kiµidξ). (9)

Each type-i departure in the closed system is simultaneously a type-i “arrival”, which is allocated according
to Greedy-D. Thus, the realization of the process is (w.p.1) uniquely determined by the initial state Xr(0)
and the realizations of Πki(·). Denote by Arki(t) the total number of arrivals allocated along edge (k, i).
Obviously, we have the conservation law for each type i:

∑
k A

r
ki(t) ≡

∑
kD

r
ki(t), ∀t ≥ 0. In addition to

xrk(t) =
1

r
Xr
k(t),

we introduce other fluid-scaled quantities:

drki(t) =
1

r
Dr
ki(t), arki(t) =

1

r
Arki(t).

A set of Lipschitz continuous functions [{xk(·), k ∈ K}, {dki(·), (k, i) ∈ M}, {aki(·), (k, i) ∈ M}] on the
time interval [0,∞) we call a fluid sample path (FSP), if there exist realizations of Πki(·) satisfying (8) and
a fixed subsequence of r, along which

[{xrk(·), k ∈ K}, {drki(·), (k, i) ∈M}, {arki(·), (k, i) ∈M}]→
[{xk(·), k ∈ K}, {dki(·), (k, i) ∈M}, {aki(·), (k, i) ∈M}], u.o.c. (10)

It is easy to see that the family of all FSPs is uniformly Lipschitz.

Lemma 3. Suppose the initial states xr(0) are fixed and are such that xr(0) → x(0). Then, w.p.1 for any
subsequence of r there exists a further subsequence of r, along which the convergence (10) holds, where the
limit is an FSP.

6

Proof is very standard. Essentially, it suffices to observe that, with probability 1, each sequence (in r) of
functions drki(·) is asymptotically Lipschitz, namely for some C > 0, and all 0 ≤ t1 ≤ t2 <∞,

lim sup
r

drki(t2)− drki(t1) ≤ C(t2 − t1),

which in turn follows from (8). And similarly for functions arki(·), because arki(t) ≤
∑
k d

r
ki(t). Using this and

(10), we easily verify the u.o.c. convergence of all xrk(·), drki(·), arki(·), along possibly a further subsequence,
and the fact that the limits are Lipschitz. We omit details. 2

For an FSP, at a regular time point t, we denote vki(t) = (d/dt)aki(t) and wki(t) = (d/dt)dki(t). In other
words, vki(t) and wki(t) are the rates of type i “fluid” arrival and departure along edge (k, i), respectively.

Lemma 4. An FSP satisfies the following properties:

yi(t) =
∑
k

kixk(t) ≡ ρi;

at any regular point t,
wki(t) = kiµixk, ∀(k, i) ∈M,∑

k:(k,i)∈M

wki(t) =
∑

k:(k,i)∈M

vki(t) = λi, ∀i ∈ I,

(d/dt)xk(t) = [
∑

i:k−ei∈K̄

vki −
∑

i:k+ei∈K

vk+ei,i]− [
∑

i:k−ei∈K̄

wki −
∑

i:k+ei∈K

wk+ei,i], ∀k ∈ K.

Proof is both standard and obvious. 2

4 Characterization of the optimal point x∗ and related properties

This section describes properties of the optimal point x∗, and related general properties of the “allocation”
vectors, which, roughly speaking, have the meaning of the vector v(t) = {vki(t), (k, i) ∈M} of arrival rates.
The results of this section are not limited the closed system or the Greedy-D algorithm.

Recall that x∗ is defined as the unique optimal solution of the convex optimization problem

min
x∈R|K|

+

F (x) (11)

subject to ∑
k∈K

kixk = ρi, ∀i, (12)

where F (x) =
∑
k(1 + α)−1x1+α

k with α > 0.

Using Lagrange multipliers ηi for the constraints (12), the Lagrangian is∑
k

1

1 + α
x1+α
k +

∑
i

ηi[ρi −
∑
k

kixk] =
∑
k

[
1

1 + α
x1+α
k − xk

∑
i

ηiki] +
∑
i

ηiρi.

Therefore, we have the following characterization: vector x = x∗ if and only if there exist constants ηi such
that

xαk = max{
∑
i

kiηi, 0}. (13)

From here we also observe that at least one of the Lagrange multipliers is strictly positive, ηi > 0, and
therefore, for such i, x∗ei > 0.

7

For x ∈ R|K|+ and (k, i) ∈M denote

∆ki = ∆ki(x) = xαk − xαk−ei ,

where, by convention, xk = 0 when k = 0.

Definition 5 (Allocations). A vector γ = {γki, (k, i) ∈M}, such that all γki ≥ 0,∑
k : (k,i)∈M

γki = λi, ∀i,

we will call an allocation (of the arrival rates). For a given x ∈ X , the allocation γ′ = γ′(x), with components
γ′ki = kiµixk, is called neutral. An allocation γ is called a simple improving allocation, or SI-allocation,
for a given x ∈ X , if there exist edges (k, i) and (k′, i), with the same i but k′ 6= k, such that the following
conditions hold:

ki > 0, xk > 0,

either k′ = ei or [k′i > 0 and xk′−ei > 0], (14)

∆k′i < ∆ki, (15)

γki = 0, γk′i = k′iµixk′ + kiµixk,

γ`j = γ′`j = `jµjx`, for (`, j) 6= (k, i), (k′, i).

We denote by Γ(x) the set consisting of the neutral and all SI-allocations for x.

The meaning of this definition is simple and becomes clear with the use of following notation. For x ∈ X ,
denote

D(γ) = D(γ, x) =
∑

(k,i)∈M

∆ki[γki − kiµixk].

(The meaning of this is: D(v(t), x(t)) = (d/dt)F (x(t)) for an FSP at a regular point t.) Clearly, D(γ′) = 0
for the neutral allocation, and D(γ) < 0 for any SI-allocation. This is because any SI-allocation γ, associated
with edges (k, i) and (k′, i), is obtained from the neutral by “reallocating” the positive amount kiµixk of
type-i input rate from edge (k, i) to edge (k′, i) with strictly smaller ∆k′i; condition (14) guarantees that
there are servers in the configuration k′ − ei, to which these reallocated type-i arrivals can be added.

Lemma 6. If x ∈ X and x 6= x∗, then there exists at least one SI-allocation γ ∈ Γ(x).

Proof is by contradiction. Suppose SI-allocations do not exist. Then there must exist at least one i ∈ I such
that xei > 0. If not, we pick a minimal k with xk > 0, for which necessarily

∑
i ki ≥ 2. Then we could pick i

such that ki ≥ 1 and construct the SI-allocation γ associated with edges (k, i) and (ei, i). (I.e., γ is obtained
from the neutral allocation by “reallocating” amount kiµixk of type i input from edge (k, i) to edge (ei, i).)
Therefore, indeed, xei > 0 for at least one i.

Denote by I+ the set of those i with xei > 0, and by I− = I \ I+ the set of those i with xei = 0. Set I+ is
non-empty, while I− may or may not be empty. Let us fix the following values of ηi:

ηi =

{
xαei , if i ∈ I+

mink : (k,i)∈M∆ki, if i ∈ I−

It follows from this definition that ηi > 0 if and only if i ∈ I+.

Let us show that (13) must hold for these ηi. Denote uk = max{
∑
i kiηi, 0}; so, we will show that xαk = uk for

all k. Suppose not. Let us choose a minimal k for which this relation fails. Note that necessarily
∑
i ki ≥ 2.

Consider first the case when ki = 0 for all i ∈ I−. Pick any i ∈ I+ for which ki ≥ 1. If xαk > uk, then
∆ki > ηi; we can then construct the SI-allocation associated with the reallocation from (k, i) to (ei, i); this

8

is a contradiction. If xαk < uk, then ∆ki < ηi, and we can construct the SI-allocation, which does the
“opposite” reallocation from (ei, i) to (k, i); again, a contradiction.

The second case is when ki ≥ 1 for at least one i ∈ I−. We pick such an i. Condition xαk < uk would imply
∆ki < ηi – a contradiction with the definition of ηi. Therefore, xαk > uk, and then xk > 0 and ∆ki > ηi.
If ηi = 0, then we can construct the SI-allocation associated with the reallocation from (k, i) to (ei, i).
Otherwise, if ηi < 0, there exists an edge (k′, i) such that ∆k′i = ηi < 0 and, consequently, xk′−ei > 0; we
can construct the SI-allocation associated with the reallocation from (k, i) to (k′, i).

We have proved that, indeed, (13) holds for the chosen values of ηi. But this means that x = x∗ – this
contradiction completes the proof. 2

For any x, denote
Dmin(x) = min

γ∈Γ(x)
D(γ, x).

The minimum is attained and, obviously, Dmin(x) ≤ 0 for any x.

Lemma 7. For any ε > 0 there exists ε1 > 0 such that

‖x− x∗‖ ≥ ε implies Dmin(x) < −ε1. (16)

Proof. We use compactness of X . If the lemma statement does not hold, then, for some fixed ε > 0 we
can find a converging sequence x(n) → x′ ∈ X , n → ∞, such that Dmin(x(n)) → 0 and ‖x − x′‖ ≥ ε. By

Lemma 6, there exists an SI-allocation γ ∈ Γ(x′). Since x′k > 0 implies x
(n)
k > 0 for all large n, we can

construct (for all large n) an SI-allocation γ(n) ∈ Γ(x(n)) associated with the same reallocation as the one
producing γ. Then, we have γ(n) → γ and D(γ(n), x(n)) → D(γ, x′) < 0. This contradicts the assumption
Dmin(x(n))→ 0. 2

5 Proof of Theorem 2

Lemma 8. Any FSP (for the closed system under Greedy-D) is such that at any regular point t,

d

dt
F (x(t)) = D(v(t), x(t)) ≤ Dmin(x(t)). (17)

Proof. Within this proof, x = x(t) and v = v(t). Consider a specific allocation γ ∈ Γ(x), for which the
minimum in the definition of Dmin(x) is attained; unless x = x∗, γ is an SI-allocation, associated with some
fixed reallocation from (k, i) to (k′, i). Define the following “distribution function”:

H(ξ; v) =
∑

(`,j)∈M : ∆`j≤ξ

v`j , ξ ∈ R.

Function H(ξ; γ) is defined the same way, by replacing v with γ. Then, we must have

H(ξ; v) ≥ H(ξ; γ), ∀ξ. (18)

Indeed, consider any two edges (`, j) 6= (`′, j) with a common j, and suppose ∆`′j < ∆`j . Then, in a fixed
sufficiently small time interval [t, t+ ε], for all pre-limit trajectories with sufficiently large parameter r, any
j-customer whose service completes at a server with configuration `′ cannot possibly be placed along the
edge (`, j). (Here we use the fact that the system is closed: when a customer service is completed, there is
always an option to place it back into the same server for the new service.) Furthermore, if either `′ = ej or
x`′−ej > 0, any j-customer completing service in configuration `, will be placed for new service either along
the edge (`′, j) or possibly along another edge (`′′, j) with ∆`′′j ≤ ∆`′j . This proves (18), from which (17)
easily follows. 2

As a corollary of Lemma 8 we obtain

9

Lemma 9. Any FSP (for the closed system under Greedy-D) is such that

x(t)→ x∗. (19)

The convergence is uniform across all initial states x(0) ∈ X .

Remainder of the proof of Theorem 2. We fix ε > 0 and choose T > 0 large enough so that, for any FSP we
have ‖x(T)− x∗‖ ≤ ε. We claim that, as r →∞,

P{‖xr(T)− x∗‖ > 2ε} → 0, (20)

where the convergence is uniform across all initial states xr(0). This claim is true, because for an arbitrary
sequence of fixed initial states xr(0), we must have

lim sup
r→∞

‖xr(T)− x∗‖ ≤ ε, w.p.1,

because w.p.1 we can always choose a subsequence of r along which the u.o.c convergence to an FSP holds.
Claim (20) implies the result, because ε can be arbitrarily small. 2

6 Original system. Optimality of a modified version of Greedy-D

We now return to our original “open” system. Unfortunately, the proof of Greedy-D optimality in the closed
system does not carry over to the open system. The key reason can be informally described as follows. If
v(t) is the exogenous arrival rate allocation vector in the fluid limit, then the result analogous to Lemma 8
no longer holds; namely, property (18) in its proof is not valid. Suppose we have an edge (`, j) on which the
unique minimum min`′ ∆`′j is attained, x`−ej = 0, x` > 0 and `j > 0. There is the non-zero rate µj`jx` of
departures along (`, j). In this case it is possible that v`j < µj`jx`, because some type j exogenous arrivals
will find no servers in configuration ` − ej . (In the closed system we must have v`j ≥ µj`jx`, because all
departures along (`, j) have the option of “coming back” along the same edge.) Therefore, the argument
leading to (18), and in fact the property itself, does not hold.

In this section we will prove the asymptotic optimality of a slightly modified version of the Greedy-D al-
gorithm, called Greedy-DM, which, in a sense, “emulates” the behavior of Greedy-D in the corresponding
closed system. Informally the key idea of Greedy-DM is to make decisions about placements of new exoge-
nous type i arrivals a little “in advance”, at the instants of type i departures. This is achieved by using
“placeholders,” called tokens: when a type i departure occurs, we “pretend” that immediately a new type i
arrival occurs, decide which server this arrival would be placed into according to the Greed-D rule, and place
a type i token in that server. When new actual type i customers arrive, they first seek and replace type i
tokens if there are any; if no type i token is available, the customer is placed according to the Greedy-D. (In
addition to being replaced by actual customers, we make the tokens ”impatient” – they leave the system by
themselves after a random exponentially distributed time.) The analysis in this section shows that, in the
fluid limit, “all” tokens are replaced by actual arrivals and “all” actual arrivals replace tokens. This means
that the allocation of actual customer arrival rates is “equal” to that of tokens; the latter, in turn, satisfies
same properties as the rate allocation in the closed system.

Definition 10 (Greedy-DM discipline). Suppose the weights Wk(x) = xαk are given, as in the definition
of standard Greedy-D. At any given time there are two kinds of type i customers – actual customers being
served as usual and tokens. For the purposes of defining server configurations k and the system state X,
type i tokens are treated the same way as actual type i customers.
When a departure of actual type i customer from configuration k at time t occurs, the following actions are
taken: a new token of type i is immediately created; this new token is treated the same way as a new type
i arrival, and is placed for “service” immediately; the token is added to an available configuration k (with
either k = 0 or Xk(t−) > 0) such that k + ei ∈ K and the difference Wk+ei(X(t−))− I{k 6= 0}Wk(X(t−))

10

is the smallest (where t− refers to the time after the service completion, but before the token placement).
When a new exogenous arrival of an (actual) type i customer occurs, it replaces an arbitrarily chosen type i
token (anywhere in the system), if such is available; otherwise, this arrival is added (as in the usual Greedy-
D) to an available configuration k (with either k = 0 or Xk(t−) > 0) such that k+ ei ∈ K and the difference
Wk+ei(X(t−))− I{k 6= 0}Wk(X(t−)) is the smallest (where t− refers to the time just before the arrival).
Any token of any type anywhere in the system ”completes service” at the rate µ0 > 0, independently of
anything else (i.e. the probability of service completion in a dt-long interval is µ0dt + o(dt)); “service
completion” of any token is treated the same way as service completion of an actual customer, except no new
token is created.

The random process, describing the evolution of this system is more complex, but it is still an irreducible
Markov chain. A complete server configuration is by definition a pair (k, k̂), where vector k = (k1, . . . , kI) ∈ K
gives the numbers all customers (both actual and tokens) in a server, while vector k̂ ≤ k, k ∈ K̄, gives the
number of actual customers only. Therefore, the Markov process state at time t is the vector {X(k,k̂)(t)},
where the index (k, k̂) takes values that are all possible complete server configurations, as described above.
Obviously, Ŷ ri (t) ≤ Y ri (t) for all i and t, where Y ri (t) and Ŷ ri (t) is the total number of all and actual type i
customers, respectively, and superscript r, as usual, indicates the system with parameter r. Moreover, the
behaviors of the processes (Y ri (t), Ŷ ri (t)), t ≥ 0, are independent across all i, with Ŷ ri (∞) having Poisson
distribution with mean ρir. Finally, by the Greedy-DM definition, at any time any existing type i token
“completes service” at the rate µ0. Using these facts, we easily establish the following

Lemma 11. Markov chain {Xr
(k,k̂)

(t)}, t ≥ 0, is positive recurrent for each r. Moreover, the distributions

of {(ŷri (∞), yri (∞)), i ∈ I} = (1/r){(Ŷ ri (∞), Y ri (∞)), i ∈ I} are tight, and any limit in distribution
{(ŷi(∞), yi(∞)), i ∈ I} is such that ŷi(∞) = ρi and yi(∞) ≤ ρi + λi/µ0 for all i. Consequently, the
distributions of {xr

(k,k̂)
(∞)} = (1/r){Xr

(k,k̂)
(∞)} are tight.

Proof. Consider the process (Y ri (·), Ŷ ri (·)) for a fixed r and i. Consider a different process (Ȳ ri (·), Ŷ ri (·)),
defined as follows: actual type i customers arrive the same way, and depart after their service completion,
so that Ŷ ri (t) is same as before; upon every service completion of an actual i-customer, one type i token
is created, which then stays in the system for a random time, exponentially distributed with mean 1/µ0,
independently of anything else, and then leaves the system; Ȳ ri (t) is the total number of all type i customers

(actual and tokens) in the system. Obviously, processes (Y ri (·), Ŷ ri (·)) and (Ȳ ri (·), Ŷ ri (·)) can be constructed
on a common probability space so that Y ri (t) ≤ Ȳ ri (t). But, Ȳ ri (t) is simply the number of customers in the

infinite-server system with input rate λir and mean service time 1/µi + 1/µ0. Therefore, (Ȳ ri (·), Ŷ ri (·)) is

positive recurrent; moreover, in stationary regime, Ȳ ri (∞) and Ŷ ri (∞) have Poisson distributions with means
λir(1/µi + 1/µ0) and ρir, respectively. The lemma results easily follow. 2

Let {x(k,k̂)} denote a vector with non-negative components, with indices (k, k̂) being all possible complete

configurations. Denote by x = {xk}, y = {yi} and ŷ = {ŷi} its projections, with components being

xk =
∑

k̂ : k̂≤k

x(k,k̂), yi =
∑
(k,k̂)

kix(k,k̂) =
∑
k

kixk, ŷi =
∑
(k,k̂)

k̂ix(k,k̂).

Denote by X̄ the set of those values of {x(k,k̂)} satisfying condition

yi = ŷi = ρi, ∀i.

Obviously, for any {x(k,k̂)} ∈ X̄ , its x-projection is an element of X . Also, note that the condition yi = ŷi, ∀i,
is equivalent to

x(k,k̂) = 0 unless k̂ = k, (21)

and therefore (21) holds for any {x(k,k̂)} ∈ X̄ .

The main result of this section is

11

Theorem 12. Consider a sequence of original systems, indexed by r, under the Greedy-DM algorithm with
α > 0. Let {xr

(k,k̂)
(∞)} denote the random (complete) state of the fluid-scaled process in a stationary regime.

Then, as r →∞,
d({xr

(k,k̂)
(∞)}, X̄) =⇒ 0, (22)

xr(∞) =⇒ x∗, (23)

where x∗ is defined in (7).

For each (k, i) ∈ M and k̂ ≤ k, consider independent unit-rate Poisson processes Π̂(k,k̂),i(t), t ≥ 0, and

Π̃(k,k̂),i(t), t ≥ 0; and for each i ∈ I – an independent unit-rate Poisson process Π̂i(t), t ≥ 0. Each of these

processes satisfies the functional strong law of large numbers (FSLLN) analogous to (8).

The Markov process {Xr
(k,k̂)

(·)} for each r is driven by the common set of independent Poisson processes

Π̂(k,k̂),i(·), Π̃(k,k̂),i(·) and Π̂i(·), in the natural way, as follows:

D̂r
(k,k̂),i

(t) = Π̂(k,k̂),i(

∫ t

0

Xr
(k,k̂)

(ξ)k̂iµidξ),

D̃r
(k,k̂),i

(t) = Π̃(k,k̂),i(

∫ t

0

Xr
(k,k̂)

(ξ)(ki − k̂i)µ0dξ),

Âri (t) = Π̂i(rλit),

where D̂r
(k,k̂),i

(t) and D̃r
(k,k̂),i

(t) is the number of the type-i departures from the configuration (k, k̂), due to

the service completions of actual customers and tokens, respectively, and Âri (t) is the number of the exogenous
type-i arrivals of actual customers; all in the interval [0, t]. Clearly, the entire process sample path is (w.p.1)
uniquely determined by the initial state {Xr

(k,k̂)
(0)}, the realizations of the driving Poisson processes and

the Greedy-DM discipline. In particular, the realizations of the following processes are uniquely determined:
the number of type-i departures from configuration k due to actual and token service completions, and their
total

D̂r
k,i(t) =

∑
k̂

D̂r
(k,k̂),i

(t), D̃r
k,i(t) =

∑
k̂

D̃r
(k,k̂),i

(t), Dr
k,i(t) = D̂r

k,i(t) + D̃r
k,i(t);

the number of type-i token “arrivals” allocated (upon type-i actual departures) along edge (k, i), Ãrk,i(t); the
number of type-i actual exogenous arrivals allocated along edge (k, i), without replacing an existing i-token,

Â∗∗,rk,i (t) (such arrivals change the complete configuration from (k− ei, k̂− ei) to (k, k̂); the number of type-i

actual exogenous arrivals, that replace an existing token in configuration k, Â∗,rk,i (t) (such arrivals change the

complete configuration from (k, k̂− ei) to (k, k̂) – so these do not count as arrivals into k); the total number
of all type-i arrivals into configuration k, Ark,i(t)(t) = Ãrk,i(t) + Â∗∗,rk,i (t). The following relations obviously
hold:

Âri (t) =
∑

k:(k,i)∈M

[Â∗,rk,i (t) + Â∗∗,rk,i (t)], ∀i,

∑
k:(k,i)∈M

Ãrk,i(t) =
∑

k:(k,i)∈M

D̂r
k,i(t), ∀i. (24)

We introduce fluid-scaled processes:

xrk(t) =
1

r
Xr
k(t), xr

(k,k̂)
(t) =

1

r
Xr

(k,k̂)
(t), âri (t) =

1

r
Âri (t),

and similarly defined
d̂rki(t), d̃

r
ki(t), d

r
ki(t), ãrki(t), â

∗,r
ki (t), â∗∗,rki (t), arki(t).

12

A set of Lipschitz continuous functions [{xk(·)}, {x(k,k̂)(·)}, {âi(·)}, {d̂ki(·)}, . . .] on the time interval [0,∞)

we call a fluid sample path (FSP), if there exist realizations of driving Poisson processes, satisfying the
FSLLN analogous to (8), and a fixed subsequence of r, along which

[{xrk(·)}, {xr
(k,k̂)

(·)}, {âri (·)}, {d̂rki(·)}, . . .]→

[{xk(·)}, {x(k,k̂)(·)}, {âi(·)}, {d̂ki(·)}, . . .], u.o.c. (25)

Lemma 13. Suppose the initial states {xr
(k,k̂)

(0)} are fixed and are such that {xr
(k,k̂)

(0)} → {x(k,k̂)(0)}.
Then, w.p.1 for any subsequence of r there exists a further subsequence of r, along which the convergence
(25) holds, where the limit is an FSP.

Proof is, again, very standard – it is a more general version of that of Lemma 3. We omit details. 2

Lemma 14. Consider an FSP with the initial state {x(k,k̂)(0)}. Recall notation:

yi(t) =
∑
(k,k̂)

kix(k,k̂)(t), ŷi(t) =
∑
(k,k̂)

k̂ix(k,k̂)(t),

and denote ỹi(t) = yi(t)− ŷi(t). Then, at any regular point t, for any i,

(d/dt)ŷi(t) = λi − µiŷi(t), (26)

(d/dt)ỹi(t) =

{
−λi + µiŷi(t)− µ0ỹi(t), if ỹi(t) > 0
max{0,−λi + µiŷi(t)− µ0ỹi(t)}, if ỹi(t) = 0

(27)

In particular, for any i, the convergence

(ŷi(t), ỹi(t))→ (ρi, 0), ∀i, (28)

holds and is uniform in initial states {x(k,k̂)(0)} from a compact set, and

(ŷi(0), ỹi(0)) = (ρi, 0) implies (ŷi(t), ỹi(t)) = (ρi, 0), ∀t. (29)

Proof. Equation (26) is very standard, describing an FSP for an M/M/∞ system. Equation (27) for the
ỹi(t) > 0 case is also a very basic; (27) for the ỹi(t) = 0 case is easily verified by considering the behavior of
pre-limit trajectories is a small interval [t, t+∆t], and considering the three cases, −λi+µiŷi(t)−µ0ỹi(t) < 0,
= 0 and > 0, separately. (See e.g. [8] for this type of argument in more detail.) We omit details. 2

Lemma 15. Consider a sequence of original systems, indexed by r, under the Greedy-DM algorithm. Let
{xr

(k,k̂)
(∞)} denote the random complete state of the fluid-scaled process in a stationary regime. Then, any

subsequence of r has a further subsequence, such that

{xr
(k,k̂)

(∞)} =⇒ {x(k,k̂)(∞)},

where {x(k,k̂)(∞)} ∈ X̄ w.p.1.

Proof. Fix arbitrary δ > 0, and a sufficiently large compact B so that for all large r,

P[{xr
(k,k̂)

(∞)} ∈ B] ≥ 1− δ. (30)

(We can do that by Lemma 11.) Fix arbitrary ε > 0 and choose T > 0 large enough so that for any FSP
with {x(k,k̂)(0)} ∈ B, we have d({x(k,k̂)(T)}, X̄) ≤ ε. (We can do that by Lemma 14.) Fix arbitrary δ1 > 0.
We claim that for all sufficiently large r,

{xr
(k,k̂)

(0)} ∈ B implies P{d({xr
(k,k̂)

(T)}, X̄) > 2ε} ≤ δ1. (31)

13

This claim is true, because for an arbitrary sequence of fixed initial states {xr
(k,k̂)

(0)} ∈ B, we must have

lim sup
r→∞

d({x(k,k̂)(T)}, X̄) ≤ ε, w.p.1.

(This follows from Lemma 13.) By (30) and (31), for all large r, a stationary version of the process is such
that

P{d({xr
(k,k̂)

(T)}, X̄) ≤ 2ε} ≥ (1− δ)(1− δ2).

Therefore, any limit-in-distribution {x(k,k̂)(T)} is such that

P{d({x(k,k̂)(T)}, X̄) ≤ 2ε} ≥ lim supP{d({xr
(k,k̂)

(T)}, X̄) ≤ 2ε} ≥ (1− δ)(1− δ2).

Since δ, δ2, ε are arbitrary positive, P[{x(k,k̂)(T)} ∈ X̄] = 1. 2

Lemma 16. Consider an FSP with the initial state (x(k,k̂)(0)) ∈ X̄ . (In particular, x(0) ∈ X .) Then

(x(k,k̂)(t)) ∈ X̄ for all t ≥ 0. In addition, at any regular point t, using notation wki(t) = (d/dt)dki(t),

ŵki(t) = (d/dt)d̂ki(t), vki(t) = (d/dt)aki(t), ṽki(t) = (d/dt)ãki(t), we have

wki(t) = ŵki(t) = kiµixk, ∀(k, i) ∈M, (32)∑
k:(k,i)∈M

ŵki(t) =
∑

k:(k,i)∈M

ṽki(t) = λi, ∀i ∈ I, (33)

vki(t) = ṽki(t), ∀(k, i) ∈M, (34)

(d/dt)xk(t) = [
∑

i:k−ei∈K̄

vki −
∑

i:k+ei∈K

vk+ei,i]− [
∑

i:k−ei∈K̄

wki −
∑

i:k+ei∈K

wk+ei,i], ∀k ∈ K, (35)

d

dt
F (x(t)) = D(v(t), x(t)) ≤ Dmin(x(t)). (36)

Proof. Since we have (29), {x(k,k̂)(t)} ∈ X̄ holds by definition. Relation (32) holds because

ŵki(t) =
∑
k̂≤k

k̂iµix(k,k̂)(t), wki(t)− ŵki(t) =
∑
k̂≤k

(ki − k̂i)µ0x(k,k̂)(t),

and {x(k,k̂)(t)} ∈ X̄ . We obtain (33) from the limit form of (24), namely∑
k:(k,i)∈M

ãk,i(t) =
∑

k:(k,i)∈M

d̂k,i(t),

and from
∑
k wki(t) =

∑
k ŵki(t) = µiŷi(t) = λi. Relation (34) follows from the fact that vki(t) ≥ ṽki(t),

and the strict inequality cannot hold for any (k, i), because otherwise we would have for at least one i

(d/dt)yi(t) =
∑
k

vki(t)−
∑
k

wki(t) >
∑
k

ṽki(t)−
∑
k

ŵki(t) = 0.

Equation (35) is automatic: the RHS is just the difference between arrival and departure rates to/from
configuration k. Finally, since v(t) = ṽ(t), and the rates ṽki(t) are those of “arriving” tokens (which
immediately follow service completions of actual customers), the argument in the proof of Lemma 17 (for
the closed system) applies, and we obtain (36). 2

As a corollary we obtain the analog of Lemma 9.

Lemma 17. Consider an FSP (for the original system under Greedy-DM algorithm) with the initial state
{x(k,k̂)(0)} ∈ X̄ . (In particular, x(0) ∈ X .) Then

x(t)→ x∗. (37)

The convergence is uniform across all initial states in X̄ .

14

Proof of Theorem 12. Convergence (22) has already been proved in Lemma 15. We fix ε > 0 and choose
T > 0 large enough so that for any FSP with {x(k,k̂)(0)} ∈ X̄ , we have ‖x(T)− x∗‖ ≤ ε. We claim that for
any δ1 > 0 there exists a sufficiently small δ2 > 0 such that for all sufficiently large r,

d({xr
(k,k̂)

(0)}, X̄) ≤ δ2 implies P{‖xr(T)− x∗‖ > 2ε} ≤ δ1, (38)

This claim is true, because for an arbitrary sequence of fixed initial states {xr
(k,k̂)

(0)} → X̄ , we must have

lim sup
r→∞

‖xr(T)− x∗‖ ≤ ε, w.p.1.

Constants ε and δ1 can be arbitrarily small; we also know that for any δ2, P{d({xr
(k,k̂)

(∞)}, X̄) ≤ δ2} → 1

as r →∞. Therefore, claim (38) implies (23). 2

7 The case of vector-packing constraints (1): Greedy algorithm
with aggregate configurations

So far in the paper we did not exploit a possible underlying structure of packing constraints. Instead, we
worked with a formally defined set K̄ of possible configurations. Now we will consider a special case: suppose
the configuration set K̄ is defined by vector packing constraints (1).

We say that two configurations k and k′ are equivalent if they require same total amounts of resources of
each type: ∑

i

kibi,n =
∑
i

k′ibi,n, ∀n. (39)

A class of equivalent configurations is denoted q; we will call it aggregate configuration, or a-configuration.
Zero a-configuration, denoted (with some notation abuse) by q = 0, is the one containing the sole config-
uration k = 0; by convention X0 = 0, where the subscript 0 can refer to either zero configuration or zero
a-configuration. The sets of all a-configurations and non-zero a-configurations are denoted by Q̄ and Q,
respectively. We write q(k) for the aggregate configuration containing k. We use notation

Xq =
∑
k∈q

Xk,

and similarly for other quantities summed up over an a-configuration q. Clearly, vector {Xq, q ∈ Q} is a
projection of X = {Xk, k ∈ K}.

In this section we show that (versions of) the Greedy algorithm, using quantities Xq instead of Xk, asymp-
totically minimizes ∑

q∈Q
X1+α
q (∞),

which, again, approximates (when α > 0 is small) the total number of occupied servers
∑
qXq(∞) ≡∑

kXk(∞) in a stationary regime. The difference, however, is that |Q| can be much smaller than |K|, thus
making the Greedy algorithm easier to implement in practice.

7.1 Results.

For x ∈ R|K|+ consider function

Φ(x) =
∑
q

(1 + α)−1x1+α
q ≡

∑
q

(1 + α)−1[
∑
k∈q

xk]1+α

15

with parameter α > 0, and the following the convex optimization problem

min
x∈R|K|

+

Φ(x) (40)

subject to ∑
k∈K

kixk = ρi, ∀i. (41)

We denote by X ∗ the set of optimal solutions of this problem; obviously, X ∗ ⊆ X .

Definition 18 (Greedy discipline with a-configurations).

1. Integral form (Greedy-I-AC). A type i customer arriving at time t is added to an available a-configuration
q (with either q = 0 or Xq(t−) > 0) such that the addition does not violate the vector packing constraints
and the increment Φ(X(t))− Φ(X(t−)) is the smallest. The ties between a-configurations are broken
according to an arbitrary deterministic rule. The choice of a server within the chosen a-configuration
is random uniform.

2. Differential form (Greedy-D-AC). For each q ∈ Q, denote Wq(x) = (∂/∂xq)Φ(x) = xαq , x ∈ R|K|+ .
A type i customer arriving at time t is added to an available configuration k (with either q = 0 or
Xq(t−) > 0) such that the addition does not violate the vector packing constraints and the difference
Wq+ei(X(t−))−I{q 6= 0}Wq(X(t−)) is the smallest. [Here q+ei denotes the a-configuration containing
configurations k + ei, k ∈ q (and possibly other configurations).] The ties between a-configurations
are broken according to an arbitrary deterministic rule. The choice of a server within the chosen
a-configuration is random uniform.

Theorem 19. Consider a sequence of closed systems, indexed by r, and let xr(∞) denote the random state
of the (fluid-scaled) process is a stationary regime, under the Greedy-D-AC discipline with α > 0. Then, as
r →∞,

d(xr(∞),X ∗) =⇒ 0.

Definition 20 (Greedy-DM-AC discipline). This discipline, which uses tokens, is the modification of Greedy-
D-AC, completely analogous to the modification of Greedy-D that leads to Greedy-DM.

Theorem 21. Consider a sequence of original systems, indexed by r, under the Greedy-DM-AC algorithm
with α > 0. Let {xr

(k,k̂)
(∞)} denote the random (complete) state of the fluid-scaled process in a stationary

regime. Then, as r →∞,
d({xr

(k,k̂)
(∞)}, X̄) =⇒ 0,

d(xr(∞),X ∗) =⇒ 0.

In the rest of this section we will consider the closed system under Greedy-D-AC, and will prove Theorem 19.
We will omit the proof of Theorem 21 which is “obtained from” that of Theorem 19 in exactly same way as
the proof of Theorem 12 was obtained from that of Theorem 2.

7.2 Optimal set characterization and related properties.

Using Lagrange multipliers ηi for the constraints (41), the Lagrangian of the problem (40)-(41) is∑
q

1

1 + α
[
∑
k∈q

xk]1+α +
∑
i

ηi[ρi −
∑
k

kixk].

We obtain the following characterization: vector x ∈ X is an optimal solution of (40)-(41) (i.e. x ∈ X ∗) if
and only if there exist constants ηi such that (using notation uk = max{

∑
i kiηi, 0})

xαq = max
k∈q

uk, ∀q ∈ Q, (42)

16

(
uk < max

k′∈q(k)
uk′ imples xk = 0

)
, ∀k ∈ K. (43)

More notation. Consider the following order relation on Q̄: q′ ≤ q if k′ ≤ k for some k′ ∈ q′ and k ∈ q. q′ < q
means q′ ≤ q and q′ 6= q. If a-configuration q contains at least one k with ki > 0, we use a (slightly abusive)
notation q − ei for the a-configuration containing k − ei, i.e. q − ei

.
= {k − ei | k ∈ q, ki > 0}; otherwise,

q − ei = ∅. Denote by Ma the set of pairs (q, i) such that q − ei 6= ∅. For x ∈ R|K|+ and (q, i) ∈Ma denote

∆qi = ∆qi(x) = xαq − xαq−ei .

Lemma 22. Consider the following property of an element x ∈ X . (We will refer to it as NSI-property –
“No Simple Improving allocation”). For any two elements (q, i), (q′, i) ∈Ma (with q 6= q′, but a common i),
condition

∆q′i < ∆qi (44)

implies either
xk = 0 for all k ∈ q such that ki > 0 (45)

or
q′ − ei 6= 0 and xq′−ei = 0. (46)

If x ∈ X satisfies the NSI-property, then condition (42) holds.

Proof. Consider x ∈ X satisfying the NSI-property. For each i define

ξ
i

= min
k: ki>0, xk>0

∆q(k),i, ξi = max
k: ki>0, xk>0

∆q(k),i.

It is easy to check that we cannot have ξi > 0 and ξ
i
≤ 0, because this would violate the NSI-property.

Then, we can further define

ηi =

{
ξi, if ξi > 0
ξ
i
, if ξ

i
≤ 0

(47)

Denote by I+ the subset of those i with ηi > 0, and by I− = I \ I+ the remaining subset. It is easy to
check that for any fixed i ∈ I−, we must have

∆q(k),i = ηi for all k such that ki > 0, xk > 0, (48)

otherwise a contradiction to NSI-property is obtained.

Using notation uk = max{
∑
i kiηi, 0}, let us define the values x0

q via

[x0
q]
α = max

k∈q
uk.

It is easy to check that
[x0
q]
α − [x0

q−ei]
α ≥ ηi, ∀(q, i) ∈Ma. (49)

Let us prove (42), which is equivalent to xq = x0
q, ∀q. Suppose this is not true. Consider a minimal q for

which xq 6= x0
q.

Case (c1): suppose xq > x0
q. Then necessarily xq > 0. Consider any k ∈ q with xk > 0.

Sub-case (c1.1): suppose ki > 0 for some i ∈ I−. Fix this i and denote q′ = q − ei. If q′ = 0, we obtain a
contradiction to the definition of ηi, and so q′ 6= 0 must hold. Then xq′ = x0

q′ by definition of q (as a minimal
counterexample). Using (49) we obtain xαq − xαq′ = ∆q,i > ηi – a contradiction to (48). Thus sub-case (c1.1)
is impossible.
Sub-case (c1.2): suppose ki > 0 implies i ∈ I+ and then ηi > 0. Fix an i with ki > 0, and consider
q′ = q − ei. If q′ = 0, we obtain a contradiction to the definition of ηi, and so q′ 6= 0 must hold. We have
xq′ = x0

q′ by definition of q; therefore, using (49), xαq − xαq′ = ∆q,i > ηi – a contradiction with the definition

17

of ηi. Sub-case (c1.2), and then case (c1), is impossible.
Case (c2): suppose xq < x0

q. Then necessarily x0
q > 0. Let us fix a k ∈ q, on which the maxk∈q uk > 0 is

attained, and so uk > 0.
Sub-case (c2.1): suppose ki > 0 for some i ∈ I−. Fix this i and denote q′ = q − ei. We cannot have q′ = 0,
because that would imply ηi > 0. Therefore, q′ 6= 0 and [x0

q]
α − [x0

q′]
α = ηi, implying in particular x0

q′ > 0.

But, xq′ = x0
q′ and therefore xαq − xαq′ = ∆q,i < ηi. Recalling the definition of ηi, we obtain a contradiction

to NSI-property. Thus, sub-case (c2.1) is impossible.
Sub-case (c2.2): suppose ki > 0 implies i ∈ I+ and then ηi > 0. Fix an i with ki > 0, and consider q′ = q−ei.
If q′ = 0, we have ∆q,i < ηi – a contradiction to NSI-property. Therefore, q′ 6= 0 and xq′ = x0

q′ > 0 (because
ηi > 0 for all i with ki > 0). Then, ∆q,i < ηi and we, again, obtain a contradiction to NSI-property. Sub-case
(c2.2), and then case (c2), is impossible.
The proof of (42) is complete. 2

7.3 Fluid sample paths.

We now define fluid sample paths for the closed system under Greedy-D-AC algorithm. First, we will specify
the construction of the process itself. In addition to the set of unit-rate Poisson processes, driving the service
completions, we define primitive processes (common for each r), driving the random uniform assignment of
customers “within” each a-configuration q. Namely, for each q we define an i.i.d. sequence ξq(1), ξq(2), . . .
of random variables, uniformly distributed in [0, 1]. The configurations k ∈ q are indexed by 1, 2, . . . , |q| (in
arbitrary fixed order). When an m-th customer of any type is assigned to a-configuration q (with m referring
to the order of assignment since initial time 0, and not to the customer type), this customer is assigned to
a server in configuration k′ indexed by 1 if

ξq(m) ∈ [0, Xr
k′/X

r
q],

it is assigned to a server in configuration k′′ indexed by 2 if

ξq(m) ∈ (Xr
k′/X

r
q , (X

r
k′ +Xr

k′′)/X
r
q],

and so on. (Note that necessarily Xr
q > 0 – otherwise there would be no assignment to a-configuration q.)

Denote

grq(s, ζ)
.
=

brsc∑
m=1

I{ξq(m) ≤ ζ},

where s ≥ 0, 0 ≤ ζ ≤ 1, and b·c denotes the integer part of a number. Obviously, from the strong law of
large numbers (SLLN) and the monotonicity of grq(s, ζ) on both arguments, we have the following functional
SLLN

grq(s, ζ)→ sζ, u.o.c. w.p.1 (50)

Clearly, the realization of the process is uniquely determined by the initial state and the realizations of
driving processes Πki(·) and (ξq(1), ξq(2), . . .).

A set of Lipschitz continuous functions [{xk(·), k ∈ K}, {dki(·), (k, i) ∈ M}, {aki(·), (k, i) ∈ M}] on the
time interval [0,∞) we call a fluid sample path (FSP), if there exist realizations of Πki(·) satisfying (8),
realizations of (ξq(1), ξq(2), . . .) satisfying (50), and a fixed subsequence of r, along which convergence (10)
holds.

It is easy to see that the family of all FSPs is uniformly Lipschitz.

We can easily verify that Lemmas 3 and 4 hold as is for Greedy-D-AC algorithm. Further, the following
lemma is analogous to Lemma 8 (and has essentially same proof).

Lemma 23. Any FSP is such that at any regular point t,

d

dt
F (x(t)) ≤ 0. (51)

18

Moreover, unless x(t) satisfies NSI-condition, the inequality (51) is strict.

We will need the following FSP property, which follows from the random uniform rule of Greedy-D-AC for
assignments within each a-configuration.

Lemma 24. Consider an FSP. Suppose that at some t > 0, x = x(t) is such that for some k ∈ K and i we
have: xk > 0, ki > 0, k′ = k − ei 6= 0, xk′ = 0, and xq′ > 0 where q′ = q(k′). Then t is not a regular point.

Proof. Suppose t is a regular point. We must have
∑
i′ vk′+ei′ ,i′(t) = 0. Indeed, in a small interval [t, t+ δ],

for all sufficiently large r, the pre-limit sample paths defining the FSP are such that

xrk′

xrq′
<

Cδ

xq′ − Cδ
,

where C > 0 is some constant (depending on the Lipschitz constants for FSP components). This, along with
(50), implies that the fraction of the customers added in [t, t+ δ] to servers in configuration k′, among those
added to a-configuration q′, is upper bounded by the RHS, which can be made arbitrarily small by choosing
sufficiently small δ. This means that

∑
i′(ak′+ei′ ,i′(t + δ) − ak′+ei′ ,i′(t))/δ ↓ 0 as δ → 0, which implies∑

i′ vk′+ei′ ,i′(t) = 0. Since xk′ = 0, obviously,
∑
i′ wk′,i′(t) = 0. However, wk,i(t) = µikixk > 0. Therefore,

(d/dt)xk′(t) > 0. This is a contradiction, because if t is regular, xk′(t) = 0 implies (d/dt)xk′(t) = 0. 2

We will also need the continuity and shift properties of the FSPs, which are quite generic. (See Sections
5 and 6 in [7]. Although our model is different, essentially same proofs as in [7] apply.) The time shift
by θ ≥ 0, applied to an FSP [{xk(·)}, {dki(·)}, {aki(·)}], produces the set of functions with the same time
argument t ≥ 0, but with xk(t) replaced by xk(θ + t), dki(t) replaced by dki(θ + t)− dki(θ), aki(t) replaced
by aki(θ + t)− aki(θ).

Lemma 25. The family of FSPs satisfies the following properties.
(i) Continuity: If there is a converging sequence of FSPs, indexed by β, namely

[{x(β)
k (·)}, {d(β)

ki (·)}, {a(β)
ki (·)}]→ [{xk(·)}, {dki(·)}, {aki(·)}], u.o.c.,

then the limit is also an FSP.
(ii) Shift (or “Memoryless”): The time shift of any FSP by any θ ≥ 0 is also an FSP.

Proof. (i) For each fixed index β, and the FSP associated with it, consider a sequence of (scaled) sample
paths of the process, that define this FSP:

[{x(β,r)
k (·)}, {d(β,r)

ki (·)}, {a(β,r)
ki (·)}]→ [{x(β)

k (·)}, {d(β)
ki (·)}, {a(β)

ki (·)}], u.o.c., as r →∞.

Then, we can choose a subsequence of r, and the corresponding β = β(r), so that

[{x(β(r),r)
k (·)}, {d(β(r),r)

ki (·)}, {a(β(r),r)
ki (·)}]→ [{xk(·)}, {dki(·)}, {aki(·)}], u.o.c.,

and therefore the limit satisfies the definition of an FSP.
(ii) We pick a sequence of (scaled) sample paths of the process, that define the FSP. It is easy to see that
the time shifts of these sample paths define the FSP which is the time shift of the original one. 2

We are now in position to prove the following lemma, which is key (along with Lemmas 22 and 24) in our
analysis of Greedy-D-AC algorithm.

Lemma 26. Consider an FSP. Suppose t is a regular point and x(t) 6∈ X ∗. Then

(d/dt)Φ(x(t)) < 0. (52)

19

Proof. Suppose not, namely (d/dt)Φ(x(t)) = 0. Then for x = x(t) the NSI-condition holds, and therefore
(42) holds as well. We will obtain a contradiction. Condition (43) does not hold (otherwise, (42) and (43)
would imply x ∈ X ∗). Then, consider a minimal a-configuration q for which (43) is violated, namely: for
some k ∈ q,

uk < max
k′∈q

uk′ , xk > 0. (53)

We will show that this is impossible. First, obviously, xq > 0.
Case (c3.1): suppose ki > 0 for some i ∈ I−. Fix this i and consider q′ = q− ei. If q′ = 0, we have ∆q,i > 0,
which means ηi cannot be negative – a contradiction. Therefore, q′ 6= 0 and we must have xq′ > 0 (because
otherwise ∆q,i > 0 leads, again, to the contradiction with ηi < 0). Consider the set p

.
= {k′+ei | k′ ∈ q′} ⊆ q;

i.e., these are the configurations in q that are obtained by adding one type i customer to configurations in
q′ – it may or may not be a strict subset of q. If maxk′∈p uk′ < maxk′∈q uk′ , then, since maxk′∈q′ uk′ + ηi ≤
maxk′∈p uk′ , we obtain ∆q,i > ηi, which, along with xk > 0, leads to the contradiction with NSI-property.
Therefore, maxk′∈p uk′ = maxk′∈q uk′ . Then, there exists k′′ ∈ arg maxk′∈q′ uk′ such that xk′′ > 0 and
k′′ + ei ∈ arg maxk′∈q uk′ . (Here we used the fact that for any k′ ∈ q′, condition (43) does hold – recall that
q is a minimal a-configuration for which (43) is violated.) Note also that uk−ei < maxk′∈q′ uk′ = uk′′ and
xk−ei = 0 (otherwise, again, (43) would be violated at q′ < q). We see that x and the edge (k, i) satisfy
conditions of Lemma 24. This means t cannot be regular. Thus, case (c3.1) is impossible.
Case (c3.2): suppose for any i with ki > 0 we have i ∈ I+. Fix one such i and consider q′ = q− ei. If q′ = 0,
we have ∆q,i > ηi > 0 – a contradiction with the definition of ηi. Therefore, q′ 6= 0 and then we must have
xq′ > 0 (because ηj > 0 for each j with kj > 0). Consider the set p

.
= {k′ + ei | k′ ∈ q′} ⊆ q. Note that

maxk′∈q′ uk′ > 0 and maxk′∈q′ uk′ + ηi = maxk′∈p uk′ > 0. If maxk′∈p uk′ < maxk′∈q uk′ , then ∆q,i > ηi > 0,
which (along with xk > 0) contradicts the definition of ηi. Therefore, maxk′∈p uk′ = maxk′∈q uk′ . From this
point on, the argument leading to a contradiction repeats that in the case (c3.1) verbatim. Thus, the case
(c3.2) is impossible. The proof is complete. 2

Lemma 27. For any T > 0 and ε > 0, there exists δ > 0 such that the following property holds uniformly
on all FSPs and all t0 ≥ 0:

d(x(t),X ∗) ≥ ε, t ∈ [t0, t0 + T] implies Φ(x(t0 + T))− Φ(x(t0)) ≤ −δ. (54)

Proof. If (54) would not hold, we would be able to construct a sequence of FSPs converging u.o.c. to an
FSP such that

d(x(t),X ∗) ≥ ε and Φ(x(t)) = Φ(x(0)), t ∈ [0, T].

(Here we use the shift, continuity and uniform Lipschitz properties of the family of FSPs, and the fact that
X is compact.) This is not possible, because by Lemma 26 we must have (d/dt)Φ(x(t)) < 0 at every regular
point in [0, T]. 2

As a corollary, we obtain the following analog of Lemma 9.

Lemma 28. Any FSP is such that
d(x(t),X ∗)→ 0. (55)

The convergence is uniform across all initial states x(0) ∈ X .

7.4 Proof of of Theorem 19.

The rest of the proof of Theorem 19 is same as that of Theorem 2.

8 Some generalizations

A number of generalizations of our results are not difficult to obtain. We will discuss Theorems 2 and 12 to
be specific, but analogous generalizations apply to Theorems 19 and 21.

20

8.1 A different procedure for placing arrivals.

Theorems 2 and 12 require that when a type i customer (in Theorem 2) or a type i token (in Theorem 12) is
assigned for service, it is placed along the edge (k, i) minimizing the weight differential ∆ki = ∆ki(X(t−)).
The procedure of choosing the edge to place a customer (or token) can be replaced by the following one,
which might be easier to implement in some scenarios. We compare ∆k′i for the edge (k′, i) along which
a type i departure just occurred, to the ∆ki for one edge, selected randomly as follows: with probability
ε ∈ (0, 1) we select edge (ei, i); with probability 1− ε we pick a non-empty server uniformly at random and,
if its configuration ` is such that k = ` + ei ∈ K, we select edge (k, i). (ε is a fixed parameter.) Now, if
∆ki < ∆k′i for the selected edge (k, i) (if any), we place the customer (or token) along (k, i); otherwise, we
place it “back” along (k′, i). It is not difficult to see that the proofs of Theorems 2 and 12 still hold when
Greedy-D and Greedy-DM algorithms, respectively, are adjusted as described above.

The described alternative procedure generalizes the results in the sense that we can, for example, use this
procedure with a fixed probability δ ∈ [0, 1] and use the the “old” procedure (picking the smallest differential
∆ki) with probability 1− δ, and the results still hold.

8.2 More general input processes and service time distributions.

Theorems 2 and 12 still hold for much more general input processes and service time distributions (as opposed
to Poisson and exponential, respectively). For example, a simple (but still far reaching) generalization is for
the case when, for each customer type i, the input process is renewal (i.i.d. interarrival times, with mean
1/(λir) and finite variance) and the service time distribution Gi(ξ) (with mean

∫∞
0
ξdG(ξ) = 1/µi) has the

“hazard rate” lower bounded by µmini ∈ (0, µi]: dG(ξ)/[1−G(ξ)] ≥ µmini dξ, ∀ξ ≥ 0. In this case, we observe
that the key conservation laws still hold for the fluid limit of the stationary system: (a) the “amount” of
type i fluid is ρi and remains constant and (b) the total rate of (actual) type i departures is λi and remains
constant. In addition, say in the proof of Theorem 12 to be specific, the corresponding FSPs are such that
(actual) type i departure rate from state (k, k̂) is lower bounded by µmini k̂ix(k,k̂)(t). (Of course, the FSPs

need to be defined more generally, to account for elapsed service times.) Given these properties, the entire
argument goes through essentially as is. And, clearly, these properties hold under the input flow and service
time assumptions still far more general than in the simple case described above.

9 Discussion

We have shown that (versions of) the Greedy algorithm are asymptotically optimal in the sense of minimizing
the objective function

∑
kX

1+α
k with α > 0. When α is small (but positive), the algorithms produce an

approximation of a solution minimizing the linear objective
∑
kXk, i.e. the total number of occupied servers.

If
∑
kXk is the “real” underlying objective, the “price” we pay by applying Greedy algorithm with small

α > 0 is that the algorithm will keep non-zero amounts (“safety stocks”) of servers in many “unnecessary”
(from the point of view of linear objective) configurations k, including many – potentially all – non-maximal
configurations in K. What we gain for this “price” is the simplicity and agility of the algorithm. “True”
minimization of the linear objective

∑
kXk requires that a linear program is solved (via explicit offline or

implicit dynamic approach), so that the system is prevented from using “unnecessary” configurations k, not
employed in optimal LP solutions.

The Greedy algorithm with α > 0 is asymptotically optimal as the average number r of customers in the
system goes to infinity. The fact that it maintains safety stocks of many configurations, means in particular
that the algorithms’ performance is close to optimal when the ratio r/|K| is sufficiently large, so that there is
enough customers in the system to keep non-negligible safety stocks of servers in potentially all configurations.
If the number |K| of configurations is large, then r needs to be very large to achieve near-optimality. The use
of aggregate configurations in the special case of vector-packing constraints alleviates this scalability issue

21

when the number |Q| of aggregate configurations is substantially smaller than |K|.

Finally, we note that the closed system, considered in Theorems 2 and 19, is not necessarily artificial. For
example, it models the scenario where VMs do not leave the system, but can be moved (“migrated”) from
one host to another. In this case, a “service completion” is a time point when a VM migration can be
attempted.

References

[1] N. Bansal, A. Caprara, M. Sviridenko. A New Approximation Method for Set Covering Problems, with
Applications to Multidimensional Bin Packing. SIAM J. Comput., 2009, Vol.39, No.4, pp.1256-1278.

[2] J. Csirik, D. S. Johnson, C. Kenyon, J. B. Orlin, P. W. Shor, and R. R. Weber. On the Sum-of-Squares
Algorithm for Bin Packing. J.ACM, 2006, Vol.53, pp.1-65.

[3] D.Gamarnik. Stochastic Bandwidth Packing Process: Stability Conditions via Lyapunov Function Tech-
nique. Queueing Systems, 2004, Vol.48, pp.339-363.

[4] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Waldspurger, X. Zhu. VMware Distributed Resource
Management: Design, Implementation and Lessons Learned. VMware Technical Journal, 2012, Vol.1,
No.1, pp. 45-64. http://labs.vmware.com/publications/vmware-technical-journal

[5] J.W. Jiang, T. Lan, S. Ha, M. Chen, M. Chiang. Joint VM Placement and Routing for Data Center
Traffic Engineering. INFOCOM-2012.

[6] S.T. Maguluri, R. Srikant, L.Ying. Stochastic Models of Load Balancing and Scheduling in Cloud Com-
puting Clusters. INFOCOM-2012.

[7] A.L. Stolyar. On the Stability of Multiclass Queueing Networks: A Relaxed Sufficient Condition via
Limiting Fluid Processes. Markov Processes and Related Fields, Vol. 1(4), 1995, pp.491-512.

[8] A. L. Stolyar. MaxWeight Scheduling in a Generalized Switch: State Space Collapse and Workload
Minimization in Heavy Traffic. Annals of Applied Probability, 2004, Vol.14, No.1, pp.1-53.

[9] A. L. Stolyar, T. Tezcan. Shadow routing based control of flexible multi-server pools in overload. Oper-
ations Research, 2011, Vol.59, No.6, pp.1427-1444.

22

