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ABSTRACT
We consider a large-scale service system model proposed
in [14], which is motivated by the problem of efficient place-
ment of virtual machines to physical host machines in a net-
work cloud, so that the total number of occupied hosts is
minimized. Customers of different types arrive to a sys-
tem with an infinite number of servers. A server packing
configuration is the vector k = {ki}, where ki is the num-
ber of type-i customers that the server “contains”. Packing
constraints are described by a fixed finite set of allowed con-
figurations. Upon arrival, each customer is placed into a
server immediately, subject to the packing constraints; the
server can be idle or already serving other customers. After
service completion, each customer leaves its server and the
system.

It was shown in [14] that a simple real-time algorithm,
called Greedy, is asymptotically optimal in the sense of min-
imizing

∑
kX

1+α
k in the stationary regime, as the customer

arrival rates grow to infinity. (Here α > 0, and Xk de-
notes the number of servers with configuration k.) In par-
ticular, when parameter α is small, Greedy approximately
solves the problem of minimizing

∑
kXk, the number of

occupied hosts. In this paper we introduce the algorithm
called Greedy with sublinear Safety Stocks (GSS), and show
that it asymptotically solves the exact problem of minimiz-
ing

∑
kXk. An important feature of the algorithm is that

sublinear safety stocks of Xk are created automatically –
when and where necessary – without having to determine
a priori where they are required. Moreover, we also pro-
vide a tight characterization of the rate of convergence to
optimality under GSS. The GSS algorithm is as simple as
Greedy, and uses no more system state information than
Greedy does.

Categories and Subject Descriptors
[Network Services]: Cloud Computing; [Probability
and Statistics]: Markov Processes, Queueing Theory, Stochas-
tic Processes; [Design and Analysis of Algorithms]:
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1. INTRODUCTION
We consider a service system model [14] motivated by the

problem of efficient placement of virtual machines (VMs) to
physical host machines (servers) in a data center (DC) [6].
A service policy decides to which server each incoming VM
will be placed. We are interested in service policies that
minimize the total number of occupied servers in the system.
It is further desirable that the policy be simple, so that
placement decisions are made in real time, and depend only
on the current system state, but not on system parameters.

Consider the following description of a DC. It consists of
a number of servers. While servers may potentially have dif-
ferent characteristics, in this paper we assume that they are
all the same. More specifically, let there be N different types
of resources (for example, type-1 resource can be CPU, type-
2 resource can be memory, etc). For each n ∈ {1, 2, . . . , N},
a server possesses amount Bn > 0 of type-n resource. I
types of VMs arrive in a probabilistic fashion, and request
services at the DC. Arriving VMs will be placed into the
servers, occupying certain resources. More specifically, for
i ∈ {1, 2, . . . , I}, a type-i VM requires amount bi,n > 0
of type-n resource during service, where n ∈ {1, 2, . . . , N}.
Once a VM completes its service, it departs the system,
freeing up corresponding resources. We assume that service
times of different VMs are independent.

For each i ∈ {1, 2, . . . , I}, let ki be the number of type-i
VMs that a server contains. Then the following vector pack-
ing constraints must be observed at all times. Namely, a
server can contain ki type-i VMs (i ∈ {1, 2, . . . , I}) simulta-
neously if and only if ∑

i

kibi,n ≤ Bn, (1)

for each n ∈ {1, 2, . . . , N}. In this case, the vector k =
(k1, . . . , kI) is called a server configuration.



The model considered in this paper is similar to the DC
described above, but different in the following two aspects.

1. While vector packing constraints (cf. Eq. (1)) arise
naturally in the context of VM placement, we make the
more general assumption of so-called monotone pack-
ing constraints (cf. Section 2.1) in our model.

2. We consider a system with an infinite number of servers,
where incoming VMs will be immediately placed into
a server. For large-scale DCs, the number of servers is
not a bottleneck, hence an infinite-server system rea-
sonably approximates such DCs.

We would also like to remark that an important assumption
of our model is that the service requirement of a VM is
not affected by potentially other VMs occupying the same
server. This is a reasonable modeling assumption for multi-
core servers, for example.

There can be different performance objectives of interest.
For example, we may be interested in minimizing the to-
tal energy consumption [6], or maximizing system through-
put [9]. In this paper, we are interested in minimizing the
total number of occupied servers. These objectives are differ-
ent but related. For example, by switching off idle servers,
or keeping them in stand-by mode, we can reduce energy
consumption by minimizing the number of occupied servers.

In the main results of the paper, we introduce the pol-
icy called Greedy with sublinear Safety Stocks (GSS), and
show that it asymptotically minimizes the total number of
occupied servers in steady state, as the input flow rates of
VMs grow to infinity. GSS is a simple policy that makes
placement decisions in real time, and based only on the cur-
rent system state. Informally speaking, GSS places incom-
ing VMs in a way that greedily minimizes a Lyapunov func-
tion, which asymptotically coincides with the total number
of occupied servers. GSS maintains non-empty safety stocks
at every server configuration k whenever Xk becomes “too
small”, so as to allow flexibility on VM placement. In other
words, under GSS, there is a non-zero number of servers of
every configuration, so that an incoming VM can potentially
be placed into a server with any configuration. These safety
stocks correspond to the discrepancy between the Lyapunov
function and the total number of occupied servers, and grow
“sublinearly” with the input flow rates. We also provide a
characterization of the rate of convergence to optimality un-
der GSS, which is tighter than the conventional fluid-scale
convergence rate.

1.1 Related Works
In this section, we discuss related works, and put our re-

sults in perspective.
The most closely related work is [14], where the model

considered in this paper was proposed, and a related prob-
lem was studied. In both this paper and [14], the asymptotic
regime of interest is when the input flow rates grow to in-
finity, and the system is considered under the fluid scaling,
i.e., when the system states are scaled down by the input
flow rates. In [14], the problem of interest is minimizing∑

kX
1+α
k , where α > 0, and Xk is the number of occupied

servers with configuration k. A simple policy called Greedy
was introduced, which asymptotically minimizes the sum∑

kX
1+α
k , for any α > 0, in the stationary regime. Policies

Greedy and GSS differ in two important aspects. First, they

try to minimize different objectives –
∑

kX
1+α
k (α > 0) and∑

kXk, respectively. When α > 0 is small, Greedy approx-
imately solves the problem of minimizing the total number
of occupied servers

∑
kXk, in the asymptotic regime where

the input flow rates grow to infinity, and at the fluid scale.
However, if minimizing

∑
kXk is the “true” desired objec-

tive, α > 0 need to be chosen carefully, depending on the
system scale (input flow rates), which may be difficult to
do. Therefore, we believe that asymptotically solving the
exact problem of minimizing

∑
kXk is of substantial inter-

est. Moreover, the policy GSS proposed in this paper is
as simple as Greedy, and uses no more system state infor-
mation than Greedy does. Second, at a technical level, to
prove the asymptotic optimality of Greedy, [14] considered
only the fluid scaling and the corresponding fluid limits. In
this paper, to prove the asymptotic optimality of GSS, it is
no longer sufficient to consider the fluid-scale system behav-
ior alone; a local fluid scaling is also considered, needed to
study the dynamics of safety stocks. In addition, this allows
us to derive a tighter characterization of the rate of conver-
gence to optimality under GSS, as opposed to the fluid-scale
convergence shown in [14] for Greedy.

On a broader level, the model considered in this paper
is related to the vast literature on classical stochastic bin
packing problems. In a bin packing system, random-sized
items arrive, and need to be placed into finite-sized bins.
The items do not leave or move between bins, and a typ-
ical objective is to minimize the number of occupied bins.
A packing problem is one-dimensional if sizes of the items
and bins are captured by scalars, and multi-dimensional if
they are captured by vectors. Problems with the multi-
dimensional packing constraints (1) are called vector pack-
ing. For a good review of one-dimensional bin packing, see
for example [2], and see for example [1] for a recent review of
multi-dimensional packing. In bin packing service systems,
items (customers) arrive at random times to be placed into
a bin (server), and leave after a random service time. The
servers can process multiple customers as long as packing
constraints are observed. Customers get queued, and a typ-
ical objective of a packing algorithm is to maximize system
throughput. (See for example [4] for a review of this line
of work.) Our model is similar to the latter systems, ex-
cept there are multiple bins (servers) – in fact, an infinite
number in our case. Models of this type are more recent
(see for example, [8, 9]). [8] addresses a joint routing and
VM placement problem, which in particular includes pack-
ing constraints. The approach of [8] resembles Markov Chain
algorithms used in combinatorial optimization. [9] consid-
ers maximizing throughput of a queueing system with a
finite number of bins (servers), where VMs can wait for
service. Very recently, [7] has new results on the classical
one-dimensional online bin packing; it also contains heuris-
tics and simulations for the corresponding system with item
departures, which is a special case of our model.

As mentioned earlier, we consider the asymptotic regime
where the input flow rates scale up to infinity. In this re-
spect, our work is related to the (also vast) literature on
queueing systems in the many servers regime. (See e.g. [12]
for an overview. The name “many servers” reflects the fact
that the average number of occupied servers scales up to
infinity as well, linearly with the input flow rates.) How-
ever, packing constraints are not present in earlier works
(prior to [14]) on the many servers regime, to the best of



our knowledge.
The idea of maintaining sublinear safety stocks to increase

system flexibility, and hence avoid “resource” starvation –
the approach taken by GSS, the policy proposed in this pa-
per – has also appeared in other works. For example, see [10]
and the references therein for an overview. However, to
the best of our knowledge, the following feature of GSS is
novel, and has not appeared in algorithms proposed in ear-
lier works. Namely, GSS creates safety stocks automatically,
in the sense that it does not require a priori knowledge of the
subset of configurations for which the sublinear safety stocks
need to be maintained. As a result, GSS does not require
any a priori knowledge of the system parameters, because
the safety stocks automatically adapt to parameter changes.
We remark that the policy Greedy proposed in [14] also cre-
ates safety stocks, but they scale linearly with the input flow
rates, whereas GSS creates sublinear safety stocks.

Finally, an overview of some resource allocation issues that
arise from VM placement in the context of cloud computing
can be found in [6].

1.2 Organization
The rest of the paper is organized as follows. In Section

1.3, we introduce the notation and conventions adopted in
this paper. The precise model and main results are described
in Section 2. The model is introduced in Section 2.1. Here
we describe two versions of the model, the closed and open
system. In Section 2.2, we describe the asymptotic regime of
interest. The GSS policy is described in Section 2.3, and the
main results, Theorems 6 and 7, are stated in Section 2.4,
for the closed and open system, respectively. Sections 3 and
4 are devoted to proving Theorems 6 and 7, respectively.
A discussion of the results in this paper and some future
directions is provided in Section 5.

1.3 Notation and Conventions
Let R be the set of real numbers, and let R+ be the set

of nonnegative real numbers. Let Z be the set of integers,
let Z+ be the set of nonnegative integers, and let N be the
set of natural numbers. Rn denotes the real vector space
of dimension n, and Rn+ denotes the nonnegative orthant of
Rn. Zn and Zn+ are similarly defined. We reserve bold let-
ters for vectors, and plain letters for scalars and sets. For a
scalar x, let |x| denote its absolute value, and let dxe denote
the largest integer that does not exceed x. For two scalars
x and y, let x ∧ y = min{x, y}, and let x ∨ y = max{x, y}.
For a vector x = (xi)

n
i=1 ∈ Rn, let ‖x‖ denote its 1-norm,

i.e., ‖x‖ =
∑n
i=1 |xi|. The distance from vector x ∈ Rn to

a set U ⊂ Rn is denoted by d(x, U) = infu∈U ‖x − u‖. We
use ei to denote the i-th standard unit vector, with only the
ith component being 1, and all other components being 0.
For a set N , let 1N be the indicator function of N . For
a finite set N , let |N | be its cardinality. For two sets N
and M, let N\M denote the set difference of N and M,
i.e., N\M = {x ∈ N : x /∈ M}. For a set N ⊂ Rn, let
〈N〉 denote its convex hull, i.e., the set of all x ∈ Rn such
that there exist γ1, . . . , γm ∈ R+ and v1, . . . ,vm ∈ N with
x =

∑m
j=1 γjvj and

∑m
j=1 γj = 1. Symbol → means or-

dinary convergence in Rn, and =⇒ denotes convergence
in distribution of random variables taking values in Rn,
equipped with the Borel σ-algebra. The abbreviation w.p.1
means convergence with probability 1. We often write x(·) to
mean the function (or random process) {x(t), t ≥ 0}. We

write iff as a shorthand for “if and only if”, i.o for “infinitely
often”, LHS for “left-hand side” and RHS for “right-hand
side”. We also write WLOG for “without loss of general-
ity”, w.r.t for “with respect to”, and u.o.c for “uniformly on
compact sets”.

Throughout this paper, if x(·) is a random process (which
in most cases will be Markov), we will denote by x(∞) its
random state when the process is in stationary regime; in
other words, x(∞) is equal in distribution to x(t) (for any t)
when x(·) is stationary. We use the terms steady state and
stationary regime interchangeably.

2. MODEL AND MAIN RESULTS

2.1 Infinite Server System with Packing Con-
straints

We consider the following infinite server system that evolves
in continuous time. There are I types of customers, indexed
by i ∈ {1, 2, . . . , I} ≡ I, and an infinite number of homoge-
neous servers. A server can potentially serve more than one
customer simultaneously. We use k = (k1, k2, . . . , kI) ∈ ZI+,
an I-dimensional vector with nonnegative integer compo-
nents, to denote a server configuration. The general packing
constraints are captured by the finite set K̄ ⊂ ZI+ of feasi-
ble server configurations. Thus, a server can simultaneously
serve ki customers of type i, i ∈ I, iff k = (k1, k2, . . . , kI) ∈
K̄. From now on, we drop the word “feasible”, and simply
call K̄ the set of server configurations.

In this paper, we assume that the set K̄ is monotone.

Assumption 1. K̄ is monotone in the following sense.
If k ∈ K̄, and k′ ∈ ZI+ has k′ ≤ k component-wise, then
k′ ∈ K̄ as well.

A simple consequence of the monotonicity assumption is
that 0 ∈ K̄. We now let K = K̄\{0} denote the set of
non-zero server configurations.

Vector Packing is Monotone. An important example
of monotone packing is vector packing. Consider the vec-
tor packing constraints in (1). It is clear that if the server
configuration k = {k1, . . . , kI} satisfies (1), and if k′ ≤ k
component-wise, then k′ also satisfies (1). On the other
hand, not all monotone packing is vector packing. For ex-
ample, when I = 2, K̄ = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0)}
is monotone, but is not described by vector packing con-
straints. In the sequel, we will only assume monotone pack-
ing in our model, and all our results hold under this general
setting.

To exclude triviality, we also assume that for all i ∈ I, ei
(the i-th standard unit vector) is an element of K̄.

As discussed in the introduction, we make the following
important assumption in this paper. We assume that si-
multaneous services do not affect the service distributions
of individual customers; in other words, the service time of
a customer is unaffected by whether or not there are other
customers served simultaneously by the same server. Let
us also remark that ideally, we would like to consider an
open system, where each arriving customer is immediately
placed for service in one of the servers, and leaves the system
after service completion. However, we will first consider a
“closed” version of this open system. The reason is twofold.
First, the analysis of the closed system is a stepping stone



to that of the open system, and illustrates the main ideas
more clearly. Second, we will see shortly that the closed sys-
tem can be used to model job migration in a cloud, and is
therefore of independent interest.

Denote by Xk the number of servers with configuration
k ∈ K. The system state is then the vector X = {Xk, k ∈
K}. By convention, X0 ≡ 0 at all times.

Closed System. Here we describe the “closed” version
of the model. Let r ∈ N be given. Suppose that there
are in total r customers in the system, and no exogenous
arrivals. For each i ∈ I, we suppose that there are ρir
customers of type i in the system at all times. This in par-
ticular implies that

∑
i∈I ρi = 1. It is convenient to index

the system by r its total number of customers, and we use
Xr = (Xr

k, k ∈ K) to denote a system state. The system
evolves as follows. Each customer is almost always in service,
except at a discrete set of time instances, where it migrates
from one server to another (possibly the same one), subject
to the packing constraints imposed by K̄. For a customer,
the time between consecutive migrations is called its service
requirement. Thus, one can alternatively think of a customer
as departing the system after its service requirement, and
then immediately arriving to the system, to be placed into a
server. For each i, we assume that the service requirements
of type-i customers are i.i.d. exponential random variables
with mean 1/µi, and that the service requirements are in-
dependent across different i ∈ I. A (Markovian) service
policy (“packing rule”) decides to which server a customer
will be placed after its service requirement, based only on
the current system stateXr. A service policy has to observe
the packing constraints. Under any well-defined service pol-
icy, the system state at time t, Xr(t), is a continuous-time
Markov chain on a finite state space. Hence, for each r, the
process {Xr(t), t ≥ 0} always has a stationary distribution.

Open System. In the open system, customers of type i
arrive exogenously as an independent Poisson flow of rate
λir, where λi is fixed and r is a scaling parameter. Each
arriving customer has to be placed for service immediately
in one of the servers, subject to the packing constraints im-
posed by K̄. Service times of all customers are independent.
Service time of a type-i customer is exponentially distributed
with mean 1/µi. After a service completion, each customer
leaves the system. If we denote ρi = λi/µi, then in steady
state, the average number of type i customers in the system
is ρir, and the average total number of customers is

∑
i ρir.

We assume, WLOG, that
∑
i ρi = 1 – this is equivalent to

re-choosing the value of parameter r, if necessary. A (Marko-
vian) service policy (“packing rule”) in this case decides to
which server an arriving customer will be placed, based only
on the current system state. A service policy has to observe
the packing constraints. Similar to the closed system, we let
Xr

k(t) denote the number of servers with configuration k at
time t in the rth system. However, for the policy that we
will study, Xr(t) = (Xr

k(t))k∈K will not be a Markov pro-
cess. We postpone the discussion of a complete Markovian
description of the system and the existence of the associated
stationary distribution to Section 2.3.2.

2.2 Asymptotic Regime
We are interested in finding a service policy that mini-

mizes the total number of occupied servers in the stationary

regime. The exact problem is intractable, so instead we con-
sider asymptotically optimal service policies. For both the
closed and open systems, the asymptotic regime of inter-
est is when r → ∞. Informally speaking, in this limit, the
fluid-scaled system state satisfies a conservation law (cf. Eq.
(4)), and the best that a policy can do is solving a linear
program, subject to this conservation law. We now describe
the asymptotic regime in more detail.

First, we defined the so-called fluid scaling. Recall that
both the closed and open systems are indexed by r, and
Xr(t) is the vector that denotes the numbers of servers at
time t, in the rth system. The fluid scaled process is xr(t) =
Xr(t)/r. For each r, in the closed system, Xr(·) has a (not
necessarily unique) stationary distribution, so xr(·) also has
a stationary distribution. We will see shortly that in an open
system, Xr(·) also has a stationary distribution (see Lemma
5). Denote by Xr(∞) and xr(∞) the random states of the
corresponding processes in a stationary regime. (Recall the
convention in Section 1.3.)

We now argue that as r →∞,∑
k∈K

kix
r
k(∞) =⇒ ρi, for all i. (2)

In a closed system, for each i ∈ I, there are ρir customers
of type i in the system at all times, so on all sample paths,∑

k∈K

kix
r
k(t) = ρi, for all r, t and i.

This implies that the same holds for xr(∞). In an open sys-
tem, the total number of type-i customers is

∑
k∈K kiX

r
k(∞),

in steady state. It is easy to see that, independent from the
service policy, this quantity is a Poisson random variable
with mean ρir. Thus, as r →∞,

∑
k∈K kix

r
k(∞) =⇒ ρi.

Now consider the following linear program (LP).

Minimize
∑
k∈K

xk (3)

subject to
∑
k∈K

kixk = ρi, for all i ∈ I, (4)

xk ≥ 0, for all k ∈ K. (5)

Denote by X the set of feasible solutions to LP:

X = {x ∈ R|K|+ :
∑
k∈K

kixk = ρi, i ∈ I}.

Then X is a compact subset of R|K|+ . Let X ∗ denote the set of
optimal solutions of LP, and let u∗ denote its optimal value.
In light of Eqs. (2) and (4), a service policy is asymptotically
optimal if, roughly speaking, under this policy and for large
r,
∑

k∈K x
r
k(∞) ≈ u∗ with high probability (cf. Theorems 6

and 7).
The following characterization of the set X ∗ by dual vari-

ables will be useful. The proof is elementary and omitted.

Lemma 2. x = (xk)k∈K ∈ X ∗ iff x is a feasible solution
of LP, and there exist ηi ∈ R, i ∈ I, such that

(i)
∑
i∈I kiηi ≤ 1 for all k ∈ K, and

(ii) if
∑
i∈I kiηi < 1, then xk = 0.

The following lemma relates the distance between a point
x ∈ X and the optimal set X ∗ to the objective value of LP
evaluated at x.



Lemma 3. There exists a positive constant D ≥ 1 such
that for any x ∈ X ,

D

(∑
k∈K

xk − u∗
)
≥ d (x,X ∗) .

Note that D ≥ 1 is necessary, since for every x ∈ X ,
d (x,X ∗) ≥

∑
k∈K xk − u

∗.

Proof. See Appendix A.

2.3 Greedy with sublinear Safety Stocks (GSS)
Now we introduce the service policy, Greedy with sublinear

Safety Stocks (GSS), along with a variant, which we will
prove to be asymptotically optimal.

2.3.1 GSS Policy in a Closed System
GSS. Let p ∈ ( 1

2
, 1). For a given r, define a weight function

wr : R+ → R+ to be wr(X) = 1 ∧ X
rp

. Let M denote
the set of all pairs (k, i) ∈ K × I such that k ∈ K and
k − ei ∈ K̄. Given X = {Xk′ ,k

′ ∈ K} and (k, i) ∈ M,
define ∆r

(k,i)(X) = wr (Xk) − wr(Xk−ei). Under GSS, a
customer of type i is placed into a server with configuration
k− ei where Xk−ei > 0 or k− ei = 0, such that ∆(k,i)(X)
is minimal. Ties are broken arbitrarily.

Note that the GSS policy makes decisions based only the
current system state. The parameter r which it uses is noth-
ing else but the total number of customers in the system,
which is, of course, a function of the state, and which hap-
pens to be constant in the closed system.

We now provide an intuitive explanation of the policy. Let
fr be the anti-derivative of wr, so that

fr(X) =

{
X2

2rp
, if X ∈ [0, rp];

X − rp

2
, if X > rp.

Let F r(X) =
∑

k∈K f
r(Xk). Then wr and ∆r

(k,i) capture
the first-order change in F r. Suppose that the current sys-
tem state is X = (Xk)k∈K. Then, placing a type-i customer
into a server with configuration k − ei only changes Xk−ei

and Xk: Xk−ei decreases by 1 (if Xk−ei > 0), and Xk

increases by 1. Thus, the first-order change in F r is

d

dX
fr(X)

∣∣∣
X=Xk

− d

dX
fr(X)

∣∣∣
X=Xk−ei

= ∆r
(k,i)(X).

In this sense, GSS decreases F r greedily, by placing a cus-
tomer into a server that results in the largest (first-order)
decrease in F r.

The next lemma states that F r(X) only differs from
∑

kXk

by O(rp). The proof is straightforward and omitted.

Lemma 4. For any X ∈ R|K|+ ,∑
k∈K

Xk −
|K|rp

2
≤ F r(X) ≤

∑
k∈K

Xk.

Under the fluid scaling described earlier, the difference
O(rp) between F r(X) and

∑
k∈KXk becomes negligible, as

it is of order o(r). Thus, for a fluid-scaled process, min-
imizing F r(X) (what GSS tries to do) is “equivalent” to
minimizing

∑
k∈KXk, when r is large.

2.3.2 GSS Policy in an Open System
First, we describe the “pure” GSS policy.

GSS. Let p ∈ ( 1
2
, 1). For a given system state X, let

Z = Z(X) denote the total number of customers in the
system. For a system with parameter r, define a weight
function w̄r(X) = w̄r(X;Z) as follows: w̄r(X) = 1 ∧ X

Zp
.

(Note that w̄r(X) generalizes the corresponding weight func-
tion wr(X) = 1 ∧ X

rp
for the closed system, because in the

closed system with parameter r the total number of cus-
tomers is constant Z ≡ r.) LetM denote the set of all pairs
(k, i) ∈ K × I such that k ∈ K and k − ei ∈ K̄. Given
X = {Xk′ ,k

′ ∈ K} and (k, i) ∈ M, define ∆̄r
(k,i)(X) =

w̄r (Xk)− w̄r(Xk−ei). Under GSS, an arriving customer of
type i is placed into a server with configuration k−ei where
Xk−ei > 0 or k − ei = 0, such that ∆̄(k,i)(X) is minimal.
Ties are broken arbitrarily.

In this paper, for the open system, we will analyze not the
“pure” GSS policy, described above, but its slight modifica-
tion, called Modified GSS (GSS-M).

GSS-M. Under this policy, a token of type i is generated
immediately upon each service completion of type i, and
is placed for “service” immediately according to GSS. The
system state X = {Xk,k ∈ K} account for both tokens of
type i as well as actual type-i customers for all i ∈ I. Each
arriving type i customer first seeks to replace an existing to-
ken of type i already in “service” (chosen arbitrarily), and if
there is none, it is placed for service according to GSS. Each
token that is not replaced by an actual arriving customer be-
fore an independent exponentially distributed timeout with
mean 1/µ0, leaves the system. (This modification is the
same as the one introduced in [14] for the Greedy algorithm,
to obtain the Greedy-M policy.)

We emphasize that GSS and GSS-M do not require the
knowledge of parameter r.

Since the system evolution under the GSS-M involves both
actual customers and tokens, we need to define the Markov
chain describing this evolution more precisely. A complete
server configuration is defined (in the same way as in [14])

as a pair (k, k̂), where vector k = (k1, . . . , kI) ∈ K gives
the numbers of all customers (both actual and tokens) in

a server, while vector k̂ ≤ k, k ∈ K̄, gives the numbers of
actual customers only. The Markov process state at time t
is the vector {Xr

(k,k̂)
(t)}, where the index (k, k̂) takes val-

ues that are all possible complete server configurations, and
superscript r, as usual, indicates the system with parameter
r. Note that Xr(t) = {Xr

k(t),k ∈ K} can be considered as a
“projection” of {Xr

(k,k̂)
(t)}, with Xr

k(t) =
∑

k̂:k̂≤kX
r
(k,k̂)

for

each k ∈ K. Let Ŷ ri (t), Ỹ ri (t), and Y ri (t) = Ŷ ri (t) + Ỹ ri (t)
denote the total number of actual type-i customers, the to-
tal number of type-i tokens, and the total number of all
(both actual and tokens) type-i customers in the rth sys-
tem, respectively. The total number of actual customers of
all types is then Zr(t) =

∑
i Ŷ

r
i (t). The behaviors of the

processes {(Y ri (t), Ŷ ri (t)), t ≥ 0}, are independent across all

i, with Ŷ ri (∞) having Poisson distribution with mean ρir.
The following fact has the same proof as Lemma 11 in [14].

Lemma 5. The Markov chain {Xr
(k,k̂)

(t)}, t ≥ 0, is irre-

ducible and positive recurrent for each r.

Remark. Informally, the reason (which is the same as
in [14]) for considering a modified version of GSS instead
of pure GSS in an open system is as follows. Recall that in
a closed system, a customer migration can be also thought



of as its departure followed immediately by an arrival of the
same type. As such, departures and arrivals in a closed sys-
tem are perfectly “synchronized”, which in particular means
that in a closed system, for every departing customer, we al-
ways have the option of putting it right back into the server
which it has just departed from. This means that a greedy
control, pursuing minimization of a given objective function,
cannot possibly increase (up to a first-order approximation)
the objective function at every customer migration. In con-
trast, in an open system, departures and arrivals are not
synchronized. Therefore, it is not immediately clear that a
greedy algorithm will necessarily improve the objective. The
tokens are introduced so that, informally speaking, the de-
cisions on placements of new type-i arrivals are made some-
what “in advance”, at the times of prior type-i departures.
In this sense, the behavior of an open system“emulates”that
of a corresponding closed system.

2.4 Main Results

Theorem 6. Let p ∈ ( 1
2
, 1). For each r, consider the

closed system operating under GSS policy, in steady state.
Then there exists some constant C > 0, not depending on r,
such that

P
(
d(xr(∞),X ∗) ≤ Crp−1)→ 1

as r → ∞. Consequently, we have fluid-scale asymptotic
optimality:

d(xr(∞),X ∗) =⇒ 0.

Theorem 7. Let p ∈ ( 1
2
, 1). For each r, consider the

open system operating under GSS-M policy, in steady state.
Then there exists some constant C > 0, not depending on r,
such that as r →∞,

P
(
d(xr(∞),X ∗) ≤ Crp−1)→ 1, (6)

and

r−p
∑
i

Ỹ ri (∞) =⇒ 0. (7)

Consequently, we have fluid-scale asymptotic optimality:

d(xr(∞),X ∗) =⇒ 0 and r−1
∑
i

Ỹ ri (∞) =⇒ 0.

3. CLOSED SYSTEM: ASYMPTOTIC
OPTIMALITY OF GSS

We restrict our attention to closed systems and prove The-
orem 6 in this section. As mentioned earlier, it is not suf-
ficient to consider only the system states at the fluid scale,
defined in Section 2.2. We also need the concept of local
fluid scaling, introduced below. Proposition 9 – a key step
in the proof of Theorem 6 – is established in Section 3.2. In
Section 3.3, we construct an appropriate probability space,
quantify the drift of F r under GSS (cf. Propositions 14 and
15), and prove Theorem 6.

3.1 Local Fluid Scaling
Besides the fluid-scaled processes xr(t) defined in Section

2.2, it is also convenient to consider the system dynamics at
the local fluid scale. More precisely, for each r and t, define
the corresponding local fluid scale process x̃r(t) by

x̃r(t) =
1

rp
Xr(t).

In the asymptotic regime r →∞, recall that the fluid scale
process xr(·) always lives in the compact set X (defined in
Section 2.2). This is no longer true for the local fluid scale
processes x̃r(·): for a fixed t, {x̃r(t)}r can be unbounded.
However, at the local fluid scale, we will always consider the
following weight function w̃, which remains bounded.

Define the local-fluid-scale weight function w̃ : R∪{∞} →
R+ to be w̃(x̃) = 1∧ x̃. By convention, 1 <∞, so w̃ is well-
defined. Note that for every r, w̃(x̃r) = wr(Xr), where
x̃r = Xr/rp. For (k, i) ∈ M, we can also define the weight
difference at the local fluid scale to be

∆(k,i)(x̃) = w̃(x̃k)− w̃(x̃k−ei).

Remark. In the sequel, we will always use lower case x (or
x) to denote quantities at the fluid scale, x̃ (or x̃) to denote
quantities at the local fluid scale, and upper case X (or X)
to denote quantities without scaling.

3.2 Key Proposition
For a vector x̃ ∈ (R+ ∪ {∞})|K| with components being

possibly infinite, we can define the concept of a Strictly Im-
proving (SI) pair associated with x̃.

Definition 8 (Strictly Improving (SI) pair). For
(k, i), (k′, i) ∈ M, {(k, i), (k′, i)} is an SI pair associated
with x̃ if

(a) ki ≥ 1, x̃k > 0;

(b) either k′ = ei, or [k′i > 0 and x̃k′−ei > 0]; and

(c) ∆(k′,i) < ∆(k,i).

The idea of SI pairs is as follows. Suppose that the current
system state is Xr, and a type-i customer just completed its
service requirement at a server with configuration k. Then
the first-order change in F r is −∆r

(k,i)(X
r). Suppose that

this customer is then placed into a server with configura-
tion k′, under GSS. Then, the total (first-order) change
in F r after this transition is ∆r

(k′,i)(X
r) − ∆r

(k,i)(X
r), or

∆(k′,i)(x̃
r)−∆(k,i)(x̃

r). The existence of an SI pair ensures
that we can always improve (up to first order) the current
value of F r.

Recall that for any feasible system state Xr, xr = Xr/r
denotes the fluid-scale system state, and x̃r = Xr/rp de-
notes the associated state at the local fluid scale. The follow-
ing proposition establishes that whenever xr is sufficiently
far away from optimality, an SI pair exists.

Proposition 9. Let D > 0 be the same as in Lemma 3.
Then, there exist a positive constant ε such that the follow-
ing holds. For sufficiently large r, if d(xr,X ∗) ≥ 2D|K|rp−1,
then there exists an SI pair {(k′, i), (k, i)} (possibly depend-
ing on r) associated with x̃r = (x̃rk)k∈K, and furthermore,
x̃rk ≥ ε, x̃rk′−ei

≥ ε, and ∆(k′,i)(x̃
r)−∆(k,i)(x̃

r) ≤ −ε.

Proposition 9 follows from the two lemmas below.

Lemma 10. Consider any sequence {xr} and the asso-
ciated states x̃r. Let x ∈ X be a limit point of the se-
quence {xr}, so that the the subsequence {rn} of {r} satisfies
xrn → x and x̃rn → x̃ as n → ∞, with some components
of x̃ being possibly infinite. If there is no SI pair associated
with x̃, then x ∈ X ∗, i.e. x is an optimal solution of LP.



Proof of Lemma 10. Suppose that there is no SI pair
associated with x̃. We will show that x ∈ X ∗, i.e., x is an
optimal solution of the linear program LP. To this end, we
will use Lemma 2. In particular, we will construct ηi ≥ 0,
i ∈ I such that

(i)
∑
i∈I kiηi ≤ 1 for all k ∈ K, and

(ii) if
∑
i∈I kiηi < 1, then x̃k < 1.

Note that condition (ii) here is stronger than condition (ii)
in Lemma 2.

Let ηi = w̃(x̃ei) for all i ∈ I. Then clearly ηi ∈ [0, 1] for
all i ∈ I. We first show that condition (i) holds. To this
end, we prove the following stronger statement: if k ∈ K is
such that ki ≥ 1 implies ηi > 0, then

∑
i∈I kiηi = w̃(x̃k).

Suppose not. Let k ∈ K be a minimal counterexample, so
that ∑

i∈I

kiηi 6= w̃(x̃k), (8)

and for each i ∈ I, ki ≥ 1 implies ηi > 0. Note that∑
i∈I ki ≥ 2, since ηi = w̃(x̃ei) for each i ∈ I, by definition.

Thus, there exists i ∈ I such that ηi > 0, k′ = k − ei ∈ K,
and ∑

i∈I

k′iηi = w̃(x̃k′). (9)

Subtracting Eq. (9) from Eq. (8), we get that

∆(k,i) = w̃(x̃k)− w̃(x̃k′) 6= ηi.

Thus either ∆(k,i) > ηi, or ∆(k,i) < ηi. If ∆(k,i) > ηi,
we verify that {(k, i), (ei, i)} is an SI pair associated with x̃.
First, conditions (b) and (c) in Definition 8 are automatically
satisfied. Second, ∆(k,i) > ηi > 0. In particular, x̃k > 0.
We also have ki ≥ 1, so condition (a) in Definition 8 is also
satisfied.

If ∆(k,i) < ηi, we verify that {(ei, i), (k, i)} is an SI pair
associated with x̃. First, condition (c) in Definition 8 is
automatically satisfied. Second, since ηi > 0, x̃ei > 0. Thus
condition (a) in Definition 8 is satisfied. Finally, ki ≥ 1
by assumption, so to verify condition (b), we only need to
verify that x̃k−ei > 0. Since

∑
i∈I ki ≥ 2,

∑
i∈I k

′
i ≥ 1.

This implies that there exists i′ ∈ I such that k′i′ ≥ 1. Thus
ki′ ≥ k′i′ ≥ 1, so ηi′ > 0. By Eq. (9), w̃(x̃k′) ≥ ηi′ > 0, so
x̃k′ > 0. Thus, condition (b) in Definition 8 is verified.

In either case, we have an SI pair associated with x̃, con-
tradicting the assumption that there is no SI pair associated
with x̃. Thus, for all k ∈ K such that ki ≥ 1 implies ηi > 0,∑

i∈I

kiηi = w̃(x̃k).

For all k ∈ K, we can find k′ ≤ k such that k′ ∈ K, k′i ≥ 1
implies ηi > 0, and

∑
i∈I kiηi =

∑
i∈I k

′
iηi. Thus,∑

i∈I

kiηi =
∑
i∈I

k′iηi = w̃(x̃k′) ≤ 1.

This establishes condition (i).
We now establish condition (ii). Suppose that condition

(ii) does not hold. Let k ∈ K be minimal such that

x̃k ≥ 1, and
∑
i∈I

kiηi < 1.

First, note that k 6= ei for any i ∈ I, because if ηi < 1, then

1 > ηi = w̃(x̃ei) = 1 ∧ x̃ei .

Thus
∑
i∈I ki ≥ 2. Second, if ηi > 0 for all i ∈ I with

ki ≥ 1, then from the proof of condition (i), we have that

1 >
∑
i∈I

kiηi = w̃(x̃k) = 1 ∧ x̃k,

so we have x̃k < 1, reaching a contradiction. Thus, there
exists i ∈ I such that ηi = 0 and ki ≥ 1. Let k′ = k − ei.
Then k′ ∈ K, since∑

i∈I

k′i =
∑
i∈I

ki − 1 ≥ 1.

Since ηi = 0, ∑
i∈I

k′iηi =
∑
i∈I

kiηi < 1.

By minimality of k, we must have x̃k′ < 1. Thus, w̃(x̃k′) =
1 ∧ x̃k′ < 1, and w̃(x̃k) = 1 ∧ x̃k = 1. This implies that

∆(k,i) > 0 = ηi,

and that {(k, i), (ei, i)} is an SI pair associated with x̃. This
is a contradiction, so condition (ii) is established.

Lemma 11. Consider any sequence {xr} and associated
states x̃r. Let xrn , x, x̃rn and x̃ be the same as in Lemma
10. If for all sufficiently large n, d(xrn ,X ∗) ≥ 2D|K|rp−1

n ,
then there is an SI pair associated with x̃.

Proof of Lemma 11. We prove the lemma by contra-
diction. Suppose that the lemma is not true, then for suffi-
ciently large n, d(xrn ,X ∗) ≥ 2D|K|rp−1

n , and there is no SI
pair associated with x̃. By Lemma 10, x is an optimal solu-
tion of LP, and from the proof of Lemma 10, η = (ηi)i∈I is
an optimal dual solution of LP, where ηi = x̃ei for all i ∈ I.

For a given r, consider the following linear program, which
we call LPr.

Minimize
∑
k∈K

x̃k (10)

subject to
∑
k∈K

kix̃k = ρir
1−p, for all i ∈ I, (11)

x̃k ≥ 0, for all k ∈ K. (12)

LPr is just a scaled version of LP, defined in Section 2.2. For
each r, the feasible set of LPr is r1−pX , its set of optimal
solutions is r1−pX ∗, and its optimal value is r1−pu∗. r1−px
is an optimal solution of LPr, and η is an optimal dual
solution. Furthermore, by Lemma 3, for sufficiently large n,

∑
k∈K

x̃rnk − r
1−pu∗ = r1−p

(∑
k∈K

xrnk − u
∗

)
≥ r1−pd(xrn ,X ∗)/D
≥ r1−p · (2D|K|rp−1)/D ≥ 2|K|.

For each n, consider the Lagrangian L(x̃rn ,η) of LPrn , eval-
uated at x̃rn and η:

L(x̃rn ,η) =
∑
k∈K

x̃rnk +
∑
i∈I

ηi

(
ρir

1−p
n −

∑
k∈K

kix̃
rn
k

)
.



We calculate the Lagrangian in two ways. First, by feasi-
bility of x̃rn , L(x̃rn ,η) =

∑
k∈K x̃

rn
k . Second, we rewrite

L(x̃rn ,η) as

L(x̃rn ,η) = r1−p
n

∑
i∈I

ρiηi +
∑
k∈K

(
1−

∑
i∈I

kiηi

)
x̃rnk .

The first term on the RHS equals r1−p
n u∗, by the dual op-

timality of η. For the second term on the RHS, note that
in the proof of Lemma 10, we have established that for all
k ∈ K,

∑
i∈I kiηi ≤ 1, and if

∑
i∈I kiηi < 1, then x̃k < 1.

Since x̃rn → x̃, for all sufficiently large n, if
∑
i∈I kiηi < 1,

then x̃rnk ≤ 1. Thus for all sufficiently large n,

∑
k∈K

(
1−

∑
i∈I

kiηi

)
x̃rnk ≤ |K|,

and ∑
k∈K

x̃rnk = L(x̃rn ,η) ≤ r1−p
n u∗ + |K|,

contradicting the fact that∑
k∈K

x̃rnk − r
1−p
n u∗ ≥ 2|K|

for sufficiently large n. This establishes Lemma 11.

Proof of Proposition 9. We are now ready to prove
Proposition 9. Suppose that the proposition does not hold.
Then for all ε > 0, there exist infinitely many r and xr

such that d(xr,X ∗) ≥ 2D|K|rp−1, and for all SI pairs (if
any) {(k′, i), (k, i)} of x̃r, either x̃rk < ε, or x̃rk′−ei

< ε, or
∆(k′,i)(x̃

r) − ∆(k,i)(x̃
r) > −ε. Thus, we can find a subse-

quence {rn} of {r} and states xrn such that

1. xrn → x ∈ X as n→∞,

2. x̃rn → x̃ as n→∞, with some components of x̃ being
possibly infinite,

3. d(xrn ,X ∗) ≥ 2D|K|rp−1
n for all n, and

4. for all SI pairs {(k′, i), (k, i)} associated with x̃rn (if
any), either x̃rnk < 1/n, or x̃rnk′−ei

< 1/n, or ∆(k′,i)(x̃
rn)−

∆(k,i)(x̃
rn) > −1/n.

From Property 4, we can deduce that x̃ does not have an SI
pair. But by Property 3, this contradicts Lemma 11. This
establishes Proposition 9. 2

3.3 Proof of Theorem 6
We will assume WLOG the following construction of the

probability space. For each (k, i) ∈M, consider an indepen-
dent unit-rate Poisson process {Π(k,i)(t), t ≥ 0}. Assume
that, for each r, the Markov process Xr(·) is driven by this
common set of Poisson processes Π(k,i)(·), as follows. For
each (k, i) ∈M, let us denote by Dr

(k,i)(t) the total number
of type-i service completions from servers of configuration
k, in the time interval [0, t]. Then

Dr
(k,i)(t) = Π(k,i)

(∫ t

0

Xr
k(ξ)kiµidξ

)
. (13)

Lemma 12. Let T > 0 be fixed. With probability 1, the
following property holds. Consider any sequence {tr0}r with

tr0 ∈ [0, T r2−p]. Then for any ξ ∈ [0, 1], and for any (k, i) ∈
M,

1

r2p−1

(
Π(k,i)

(
tr0 + ξr2p−1)−Π(k,i) (tr0)

)
→ ξ

as r →∞. The convergence is uniform over tr0, ξ, and (k, i)
in the following sense. For any ε > 0, there exists r(ε)
such that for all r ≥ r(ε), ξ ∈ [0, 1], (k, i) ∈ M, and tr0 ∈
[0, T r2−p],

max
(k,i),ξ,tr0

∣∣∣∣ 1

r2p−1

(
Π(k,i)

(
tr0 + ξr2p−1)−Π(k,i) (tr0)

)
− ξ
∣∣∣∣ < ε.

The proof of Lemma 12 depends on simple large-deviation
type estimates for Poisson random variables. The idea is es-
sentially the same as that of Lemma 4.3 in [11]: we partition

the interval [0, T r2p−1] into subintervals of length rp−1/2,
and for each of them write the probability that the average
increase rate of Π(k,i) lies outside (1− ε, 1 + ε). These prob-
abilities are exp (−poly(r)), and we only have poly(r) such
subintervals (here poly(r) means a polynomial in r). This
is true for any ε > 0. We can then cover any subinterval
of length r2p−1 by these subintervals of length rp−1/2. We
omit a detailed proof here.

The following corollary is a simple consequence of Lemma
12.

Corollary 13. Let T be fixed. With probability 1, the
following holds. For sufficiently large r,

max
ξ∈[0,1],

tr0∈[0,Tr1−p]

d
(
Xr(tr0 + ξrp−1),Xr(tr0)

)
≤ 2µ̄|K|rp, (14)

where µ̄ = maxi∈I µi, and µi is the service rate for type-i
customers.

Proof. Consider the probability-1 event in Lemma 12,
in which we can and do replace T with 2µ̄T . (We do this
because the total “instantaneous” rate of all transitions is
upper bounded by 2µ̄r.) The rate of departure of type-i
customers is ρiµir ≤ ρiµ̄r, and the total rate of customer
departure is no greater than

∑
i∈I ρiµ̄r = µ̄r. Thus, for

each k ∈ K, the rate of change in Xk is at most µ̄r. For an
interval of length rp−1, the total change in Xk is at most
O(r · rp−1) = O(rp). More precisely, with probability 1, for
each k ∈ K,

lim sup
r→∞

1

rp
max
ξ∈[0,1],

tr0∈[0,Tr1−p]

∣∣Xr
k(tr0 + ξrp−1)−Xr

k(tr0)
∣∣ ≤ µ̄.

Thus, for sufficiently large r, and for each k ∈ K,

max
ξ∈[0,1],

tr0∈[0,Tr1−p]

∣∣Xr
k(tr0 + ξrp−1)−Xr

k(tr0)
∣∣ ≤ 2µ̄rp.

Summing over the above expression establishes the corol-
lary.

Proposition 14. There exist positive constants C1 and
δ such that the following holds. Let T > 0 be given. Then
w.p.1, for all sufficiently large r, and for any interval [t0, t0+
rp−1] ⊂ [0, T r1−p], if d (xr(t0),X ∗) ≥ C1r

p−1, then

F r
(
Xr(t0 + rp−1)

)
− F r

(
Xr(t0)

)
≤ −δr2p−1.



Proof. The proof idea is as follows. Consider the in-
crease in F r at each state transition. For concreteness, sup-
pose that the current system state is Xr, and a type-i cus-
tomer just completed its service requirement on a server
with configuration k, and is placed into a server with con-
figuration k′. Then it is a simple calculation to see that the
increase in F r is at most

∆r
(k′,i)(X

r)−∆r
(k,i)(X

r) + 4r−p.

The term ∆r
(k′,i)(X

r)−∆r
(k,i)(X

r) captures the first-order

increase in F r, and the term 4r−p bounds the second-order
increase in F r. We will see that over an interval of length
rp−1, the increase in F r due to first-order terms is at most
−O(r2p−1), and the increase due to second-order terms is at
most a constant. We now proceed to the formal proof.

From now on, we work with the probability-1 event de-
fined in Lemma 12, under which

1

r2p−1

(
Π(k,i)

(
t0 + ξr2p−1)−Π(k,i) (t0)

)
→ ξ

as r → ∞, uniformly over t0, ξ, and (k, i). Let C1 = 2(µ̄ +
D)|K|, where µ̄ = maxi∈I µi and D is the same as in Lemma
3. Let ε > 0 be the same as in Proposition 9, and let δ > 0
be such that δ < 1

8
µiε

2 for all i ∈ I.
Claim that for all sufficiently large r, and for any interval

[t0, t0 + rp−1] ⊂ [0, T r1−p], if d (xr(t0),X ∗) ≥ C1r
p−1, then

F r
(
Xr(t0 + rp−1)

)
− F r

(
Xr(t0)

)
≤ −δr2p−1.

Suppose the contrary. Then there exist a subsequence of
{r} (which, with an abuse of notation, we still index by r),
along which we have some [tr0, t

r
0 + rp−1] ⊂ [0, T r1−p], such

that d (xr(tr0),X ∗) ≥ C1r
p−1, and

F r
(
Xr(tr0 + rp−1)

)
− F r

(
Xr(tr0)

)
> −δr2p−1. (15)

First, for sufficiently large r, and for all ξ ∈ [0, 1], there
exists a SI pair {(k′, i), (k, i)} associated with xr(tr0 +ξrp−1)
(possibly depending on r and ξ), such that

x̃rk(tr0 + ξrp−1) ≥ ε, x̃rk′−ei(t
r
0 + ξrp−1) ≥ ε, and (16)

∆(k′,i)(x̃
r(tr0 + ξrp−1))−∆(k,i)(x̃

r(tr0 + ξrp−1)) ≤ −ε.
(17)

By Corollary 13, for all ξ ∈ [0, 1], d
(
Xr(tr0 + ξrp−1),Xr(tr0)

)
≤

2µ̄|K|rp. Using triangle inequality and choosing C1 > 2(µ̄+
D)|K|, we have that for sufficiently large r, and for all ξ ∈
[0, 1],

d
(
xr(tr0 + ξrp−1),X ∗

)
≥ 2D|K|rp−1.

(16) and (17) now follow from Proposition 9.
Fix a sufficiently large r so that (16) and (17) hold. We

then consider the first-order change in F r over the interval
[tr0, t

r
0 + rp−1] (i.e., the difference of ∆). To do this, we

partition [tr0, t
r
0 + rp−1] into subintervals of length cεrp−1,

with c > 0 chosen small enough so that on each subinterval,
there exists a fixed SI pair {(k′, i), (k, i)} such that (16) and
(17) hold for this SI pair, and with ε replaced by ε/2. We
now argue that this can be done. Consider the first such
subinterval, for example. By Lemma 12, for sufficiently large
r, the number of state transitions over this subinterval is
at most (cεrp−1) · O(r) = O(εrp) < 1

8
εrp, by choosing a

sufficiently small c. This implies that for each k ∈ K, the
change in x̃rk over this subinterval is at most 1

8
ε. Thus,

(16) and (17) hold for an SI pair associated with x̃r(tr0),

with ε replaced by ε/2. The same argument holds for other
subintervals.

Now concentrate on the subinterval [tr0, t
r
0 +cεrp−1], and a

corresponding SI pair {(k′, i), (k, i)} associated with x̃r(tr0)
for which (16) and (17) hold on this subinterval with ε re-
placed by ε/2. The number of type-i departures from servers

of configuration k is at least µi · εr
p

2
·(cεrp−1) = 1

2
cµiε

2r2p−1.
At each such departure, the first-order increase (due to the
difference of ∆) in F r is at most −ε/2, since GSS results in
a smaller first-order increase than moving the departure to
a server with configuration k′ − ei. Summing over all such
increases over type-i departures gives a first-order increase
in F r which is at most

− ε
2
·
(

1

2
cµiε

2r2p−1

)
≤ −2cεδr2p−1.

Exactly the same argument holds for other subintervals, so
the total first-order increase in F r is at most −2δr2p−1.

Finally, consider the second-order increase in F r. As dis-
cussed at the beginning of the proof, the second-order in-
crease in F r at each state transition is at most 4r−p. For
sufficiently large r, the total number of state transitions over
the interval [tr0, t

r
0 + rp−1] is at most rp−1 · O(r) = O(rp),

and hence the total second-order increase in F r is at most
(4r−p) ·O(rp) = O(1). Thus, for sufficiently large r,

F r
(
Xr(tr0+rp−1)

)
−F r

(
Xr(tr0)

)
≤ −2δr2p−1+O(1) ≤ −δr2p−1.

This contradicts (15), and we have established the proposi-
tion.

Proposition 15. There exist positive constants C and T
such that as r →∞,

P
(
d
(
xr(Tr1−p),X ∗

)
≤ Crp−1)→ 1.

Proof Sketch. The proof is very intuitive. We keep
track of the evolution of F r on the interval [0, T r1−p] subdi-
vided into rp−1-long subintervals. W.p.1., for all sufficiently
large r, the following is true for each subinterval [t0, t0 +
rp−1]: F r decreases by at least δr2p−1 if d (xr(t0),X ∗) ≥
C1r

p−1 (by Proposition 14), and it can never increase by
more than C3r

p. Therefore, if we choose T large enough,
then d (xr(t),X ∗) < C1r

p−1 at some time t ∈ [0, T r1−p] (be-
cause otherwise F r would become negative), and d (xr(t),X ∗) =
O(rp−1) thereafter. We refer the readers to Appendix B for
details.

Proof of Theorem 6. Theorem 6 is now a simple conse-
quence of Proposition 15. For each r, consider xr(·) in the
stationary regime. In particular, for any T > 0, xr(Tr1−p)
has the same distribution as xr(∞). Therefore, by Proposi-
tion 15,

P
(
d (xr(∞),X ∗) ≤ Crp−1)→ 1,

as r →∞. This completes the proof of Theorem 6. 2

4. OPEN SYSTEM: ASYMPTOTIC
OPTIMALITY OF (MODIFIED) GSS

We prove Theorem 7 in this section. The proof “extends”
that of Theorem 6. The main additional step is Theorem 18,
which shows that in steady state, for each i ∈ I, Ỹ ri (t) the
number of tokens of type-i, remains o(rp) with high proba-
bility, over O(r1−p)-long intervals. As a starting point, we
need the following facts.



Theorem 16. Consider the sequence (in r) of open sys-
tems in steady state. Consider any fixed i. There exists a
positive constant c such that, uniformly on all r,

E exp{‖r−1/2(Ŷ ri (∞)− ρir, Ỹ ri (∞))‖} ≤ c.

Proof. See Appendix C.

For our purposes, the following corollary will suffice.

Corollary 17. Consider the sequence (in r) of open sys-
tems in steady state. Consider any fixed i. Then, for any
q > 1/2,

‖r−q(Ŷ ri (∞)− ρir, Ỹ ri (∞))‖ =⇒ 0.

Next we show that the property of Corollary 17 holds
not just at a given time, but uniformly on a O(r1−q)-long
interval.

Theorem 18. Consider the sequence (in r) of open sys-
tems in stationary regime. Consider any fixed i. Let q > 1/2
and T > 0 be fixed. Then, as r →∞,

sup
t∈[0,Tr1−q ]

‖r−q(Ŷ ri (t)− ρir, Ỹ ri (t))‖ =⇒ 0, (18)

and, consequently,

sup
t∈[0,Tr1−q ]

r−q‖Zr(t)− r‖ =⇒ 0. (19)

Clearly, the statement of Theorem 18 is equivalent to the
following one: Any subsequence of {r} contains a further
subsequence along which w.p.1,

sup
t∈[0,Tr1−q ]

‖r−q(Ŷ ri (t)− ρir, Ỹ ri (t))‖ → 0, (20)

and then

sup
t∈[0,Tr1−q ]

r−q‖Zr(t)− r‖ → 0. (21)

In turn, to prove the latter statement it suffices to show
that there exists a construction of the underlying probability
space, for which the statement holds.

We will need some estimates, which can be obtained from
a strong approximation of Poisson processes, available in,
for example, [3, Chapters 1 and 2]:

Proposition 19. A unit rate Poisson process Π(·) and
a standard Brownian motion W (·) can be constructed on a
common probability space in such a way that the following
holds. For some fixed positive constants C1, C2, C3, such
that ∀T > 1 and ∀u ≥ 0

P
(

sup
0≤t≤T

|Π(t)− t−W (t)| ≥ C1 log T + u

)
≤ C2e

−C3u.

If in the above statement we replace T with rT , and u with
r1/4, we obtain

P
(

sup
0≤t≤rT

|(Π(t)− t)−W (t)| < C1 log(rT ) + r1/4

)
> 1− C2e

−C3r
1/4

. (22)

Note also that for a fixed δ ∈ (0, q − 1/2) and all large r,

P
(

sup
0≤t≤rT

|W (t)| ≤ r1/2+δ

)
≥ 1− ecr

2δ

(23)

for some constant c > 0. If events in (22) and (23) hold for
all large r, then

sup
0≤t≤rT

r−q|Π(t)− t| → 0. (24)

To prove Theorem 18, consider the following construction
of the probability space. (We want to strongly emphasize
that this construction will be used only for the purpose of
proving Theorem 18. For the proof of Theorem 7, we can and
will use a different probability space construction.) For each
r, we divide the time interval [0, T r1−q] into r1−q of T -long
subintervals, namely [(m−1)T,mT ] with m = 1, 2, . . . , r1−q.
In each of the subintervals, and for each r, we consider in-
dependent unit rate Poisson processes Πr,m

i , Π̂r,m
i , Π̃r,m

i ,
driving type i exogenous arrivals, actual customer depar-
tures and token departures, respectively. More precisely, the
number of type i exogenous arrivals, actual customer depar-
tures and token departures, by time t from the beginning of
the m-th interval is given by

Πr,m
i (λirt), Π̂r,m

i

(∫ t

0

µiŶ
r
i (ξ)dξ

)
, Π̃r,m

i

(∫ t

0

µ0Ỹ
r
i (ξ)dξ

)
,

respectively. Using (22)-(24) we obtain the following prop-

erty for Πr,m
i (and analogous ones for Π̂r,m

i and Π̃r,m
i ):

max
1≤m≤r1−q

max
0≤t≤rT

|Πr,m
i (t)− t|/rq → 0, as r →∞, w.p.1.

(25)
We denote

gr(t) = (ŷri (t), ỹri (t)) = r−q(Ŷ ri (t)− ρir, Ỹ ri (t)).

Then, we can prove the following.

Lemma 20. Consider fixed realizations (for each r) of driv-
ing processes, such that the properties (25) hold with q re-
placed by a smaller parameter q′ ∈ (1/2, q). Consider the
corresponding sequence of realizations of (gr(t), t ≥ 0), with
bounded initial states ‖gr(0)‖ ≤ ε, ε > 0. Then, there exists
a subsequence of r along which

gr(t)→ g(t), u.o.c., (26)

where (g(t), t ≥ 0) is Lipschitz continuous, with ‖g(0)‖ ≤ ε,
and it satisfies conditions

(d/dt)ŷi(t) = −µiŷi(t), (27)

(d/dt)ỹi(t) =

{
µiŷi(t)− µ0ỹi(t), if ỹi(t) > 0
max{0, µiŷi(t)− µ0ỹi(t)}, if ỹi(t) = 0

(28)
at points t ≥ 0, where the derivatives exist (which is almost
everywhere w.r.t. the Lebesgue mesure). Moreover, the con-
vergence

‖g(t)‖ → 0, t→∞, (29)

holds and is uniform w.r.t. initial states with ‖g(0)‖ ≤ ε,
and

sup
‖g(0)‖≤ε

max
t≥0
‖g(t)‖ → 0, ε→ 0. (30)

As a consequence of (30),

‖g(0)‖ = 0 implies ‖g(t)‖ = 0, ∀t. (31)

Lemma 20 is analogous to Lemma 14 in [14], except that
the space scaling by r−q is applied, as opposed to the fluid



scaling by r−1, and the number of actual customers Ŷ ri (t)
is centered before scaling. The proof is somewhat more in-
volved – the main issue is that (unlike for the fluid limit)
the Lipschitz property of the limit is no longer automatic,
because the rates of arrivals and departures in the system
are O(r), while the space is only scaled down by rq. (That
is why we need to use properties (25), as opposed to simply
a strong law of large numbers.) However, this issue can be
resolved as in, for example, the proof of Theorem 23 in [13].
We omit a detailed proof.

Proof of Theorem 18. By Corollary 17, we can choose a
subsequence of r (increasing sufficiently fast) so that

‖gr(0)‖ → 0, w.p.1.

Then, we use the construction of the probability space spec-
ified above, which guarantees that w.p.1 the properties (25)
hold with q replaced by a smaller parameter q′ ∈ (1/2, q) –
let us consider any element of the probability space for which
the properties (25) do hold. We claim that, for this element,
(20) holds. Suppose not. Then, there exists ε > 0 and a fur-
ther subsequence of r, along which τr = min{t | ‖gr(t)‖ >
ε} ≤ Tr1−q. By Lemma 20, we can and do choose time
duration T1 > 0 such that any limit trajectory g(t) with
‖g(0)‖ ≤ ε satisfies ‖g(T1)‖ ≤ ε/2. For each r, consider the
trajectory of gr on the time interval [τr − T1, τ

r]. (Suppose
for now that τr ≥ T1 for all sufficiently large r.) Then we
can choose a further subsequence of r along which gr(τr −
T1 + t) → g(t) uniformly for t ∈ [0, T1], for a limit function
g(t) as in Lemma 20. But, this is impossible because then
‖gr(τr)‖ → ‖g(T1)‖ ≤ ε/2. The case when τr < T1 for
infinitely many r is even simpler: we choose a further subse-
quence along which this is true, and consider the trajectories
of gr on the fixed time interval [0, T1]. In this case any limit
trajectory g(t) described in Lemma 20 stays at 0 in the en-
tire interval [0, T1], because ‖g(0)‖ = limr ‖gr(0)‖ = 0. This
means that ‖gr(τr)‖ → 0, again a contradiction. 2

From this point on, we assume the following structure
of the probability space. (It is different from the one used
for the proof of Theorem 18, which, as we discussed, was
for that proof only.) There are common (for all r) unit rate
Poisson processes driving the system, defined as follows. For
each (k, i) ∈ M and k̂ ≤ k, consider independent unit-rate

Poisson process Π̂(k,k̂),i(t), t ≥ 0, so that the number of ac-

tual type i customer departures from configuration (k, k̂) in

the interval [0, t] is equal to Π̂(k,k̂),i

(∫ t
0
µik̂iX

r
(k,k̂)

(ξ)dξ
)

.

Similarly, consider independent unit-rate Poisson process{
Π̃(k,k̂),i(t), t ≥ 0

}
, so that the number of type i token de-

partures from configuration (k, k̂) due to their expiration,

is equal to Π̃(k,k̂),i

(∫ t
0
µ0(ki − k̂i)Xr

(k,k̂)
(ξ)dξ

)
. Finally, for

each i ∈ I, let {Πi(t), t ≥ 0} be an independent unit-rate
Poisson process, such that the number of exogenous type i
arrivals in [0, t] is equal to Πi(λirt). For a fixed parameter
T > 0, whose value will be chosen later, each of the above
Poisson processes satisfies Lemma 12, in which we can and
do replace T with 2T [(µ̄ ∨ µ0) +

∑
i λi]. (We do this be-

cause we will “work” with system sample paths such that∑
i Ŷi =

∑
i(Ŷ

r
i + Ỹ ri ) < 2r, and for these sample paths the

total“instantaneous”rate of all transitions is upper bounded
by 2r[(µ̄ ∨ µ0) +

∑
i λi].)

Denote by D̃r
i (t1, t2) the number of type-i token depar-

tures (due to their expirations), and by Â∗∗,ri (t1, t2) the to-
tal number of exogenous type-i arrivals (of actual customers)
that do not replace type-i tokens, all in the interval (t1, t2].
Also, denote Y ri (t1, t2) = Y ri (t2)− Y ri (t1).

Theorem 21. Consider the sequence (in r) of open sys-
tems in stationary regime. Let T > 0 be fixed. Then, any
subsequence of r contains a further subsequence such that,
w.p.1, the following holds:

D̃r
i (t0, t0 + rp−1)/[rprp−1]→ 0, (32)

Â∗∗,ri (t0, t0 + rp−1)/[rprp−1]→ 0, (33)

uniformly on all intervals [t0, t0 + rp−1] ⊂ [0, T r1−p].

Proof. Indeed, by Theorem 18, we can and do choose a
subsequence of r along which (20)-(21) hold w.p.1. Then,
(32) follows from (20), which states that the number of to-

kens Ỹ ri (t) is uniformly o(rp), and from the construction of
the token departure processes, with the corresponding driv-
ing processes Π̃(k,k̂),i satisfying Lemma 12. From (20) we
also have the uniform convergence

Y ri (t0, t0 + rp−1)/[rprp−1]→ 0.

But, this along with (32) implies uniform convergence (33)
as well, because we have the conservation law

Y ri (t0, t0 + rp−1) = Â∗∗,ri (t0, t0 + rp−1)− D̃r
i (t0, t0 + rp−1).

The theorem is then proved.

Proof of Theorem 7. Consider the sequence of the system
processes in stationary regime. Consider a fixed T > 0,
chosen to be sufficiently large, as in Proposition 15. Consider
any subsequence of r. Then, we can and do choose a further
subsequence of r along which, w.p.1, (20)-(21) hold with
some q ∈ (1/2, p) (by Theorem 18) , and the properties
stated in Theorem 21 hold. As in the proof of Proposition 15,
we will keep track of the evolution of the value of F r(Xr(t)).
We emphasize that this is exactly the same function F r as
defined in Section 2.3 and used in the analysis of closed
system, namely it has the fixed parameter r (in the system
with index r), and not the random “parameter” Zr. We
claim that the following property holds.

Claim: There exist positive constants 0 < C1 < C2, δ >
0, such that the following holds. For all sufficiently large
r, uniformly on all intervals [t0, t0 + rp−1] ⊂ [0, T r1−p], we
have (a) F r(Xr(t0))− ru∗ ≥ C1r

p implies

F r(Xr(t0 + rp−1))− F r(Xr(t0)) ≤ −δr2p−1,

and (b) F r(Xr(t0))− ru∗ ≤ C1r
p implies

sup
ξ∈[0,1]

F r(Xr(t0 + ξrp−1))− ru∗ ≤ C2r
p.

Clearly, (b) is analogous to Corollary 13 for the closed sys-
tem and is proved exactly same way, with µ̄ in (14) replaced
by µ̄ ∨ µ0. Statement (a) is analogous to Proposition 14 for
the closed system, and we prove it below. It is also clear
that the claim, along with (20)-(21), implies the theorem
statement via the argument almost verbatim repeating that
in the proof of Proposition 15.

It remains to prove (a). The proof is the same as that
of Proposition 14, except that we have to make additional



estimates accounting for: (i) token departures due to their
expiration and actual customer arrivals that do not find to-
kens; (ii) the fact that GSS-M uses weight function w̄r =
w̄r(X;Zr), as opposed to function wr = wr(X) (which
has constant r as a parameter, instead of the random vari-
able Zr). This is because, if we would have only transi-
tions associated with actual customer departures and actual
customer arrivals replacing tokens, and the assignment deci-
sions would be based on weight wr as opposed to w̄r, then ex-
actly the same drift estimates as those in the proof of Propo-
sition 14 would apply. Note that in (i) we consider exactly
those transitions for which we have properties (32)-(33).
Therefore, in any interval [t0, t0 +rp−1] the “worst case” pos-
sible increase in F r(Xr) due to such transitions is o(r2p−1).
(We omit obvious epsilon/delta formalities.) Now consider
(ii). Since we have the uniform bound |Zr(t) − r| ≤ O(rq),
it is easy to check that |w̄r(X) − wr(X)| ≤ O(rq−1) for
any X ≥ 0. This means that the error in the calcula-
tion of first-order contribution into the change of F r(Xr)
in any [t0, t0 + rp−1], introduced by GSS-M using weight
w̄r instead of wr, is uniformly bounded by O(rrp−1rq−1) =
O(rp+q−1) = o(r2p−1). (Again, we omit epsilon/delta for-
malities.) We see that the potential positive contribution of
both (i) and (ii) into the change of objective function in any
interval [t0, t0 + rp−1] is o(r2p−1), uniformly on the choice of
the interval. The estimate in (a) follows. Thus, the proof of
the above claim, and of the theorem, follows. 2

5. DISCUSSION
We presented the policy Greedy with sublinear Safety Stocks

(GSS) along with a variant, which asymptotically minimize
the steady-state total number of occupied servers at the fluid
scale, as the input flow rates grow to infinity. A techni-
cal novelty of GSS is that it automatically creates non-zero
safety stocks, sublinear in the system “size”, at server con-
figurations which have zero stocks on the fluid scale. It is
important to note that the algorithm does it without a pri-
ori knowledge of system parameters. To prove the fluid-scale
optimality of GSS, we also need to consider a local fluid scal-
ing, under which the sublinear safety stocks are “visible”.
This in turn allows us to obtain a tight asymptotic char-
acterization of the algorithm deviation from exact optimal
packing.

We can extend GSS to policies that asymptotically min-
imize the more general objective

∑
k ckXk, where ck > 0

can be interpreted as the “cost” (for example, some esti-
mated energy cost) of keeping a server in configuration k,
for each k ∈ K. Instead of the weight function wr(Xr

k) for
each k ∈ K, consider the weight function ckw

r(Xr
k), and

define ∆r as the difference between the new weight func-
tions. We can then define GSS and GSS-M using the new
∆r. They minimize the fluid scale quantity

∑
k ckxk asymp-

totically, and similar convergence rates can be obtained. If
we assume that the cost ck is monotonically non-decreasing
in k (i.e., ck′ ≤ ck if k′ ≤ k), then all our results and proofs
still hold essentially verbatim. If costs ck are not monotone
in k, most of the statements and proofs easily extend, ex-
cept those of Lemmas 10 and 11, where some dual variables
ηi may need to be negative. These ηi can be defined in a
similar fashion as those in the proof of Lemma 6 in [14].

There are some possible directions for future research. For
example, one may expect asymptotic optimality of “pure”
GSS in an open system, which seems more difficult to es-

tablish. Proving or disproving its optimality may require
better understanding of and some new insight into the sys-
tem dynamics. Another direction can be the investigation
of policies other (possibly simpler) than GSS. GSS is asymp-
totically optimal as the system scale increases. However, if
the number |K| of feasible configurations is large, the sys-
tem scale may need to be very large for the near optimal
performance. It is then of interest to design policies (e.g.,
some form of best-fit) that have provably good performance
properties at a wide range of system scales.
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APPENDIX
A. PROOF OF LEMMA 3

Both X and X ∗ are convex and compact polytopes with
a finite number of extreme points. Let S and S∗ be the
set of extreme points of X and of X ∗, respectively. Note
that for all x∗ ∈ S∗,

∑
k x
∗
k = u∗, and for all x′ ∈ S\S∗,∑

k x
′
k > u∗ + δ. for some δ > 0.

Let 〈S\S∗〉 be the convex hull of the set S\S∗. Then
for all x′ ∈ 〈S\S∗〉,

∑
k x
′
k ≥ u∗ + δ. Consider the func-

tion g : 〈S\S∗〉 × X ∗ → R defined by g(x∗,x′) = ‖x∗ −
x′‖/

(∑
k∈K x

′
k − u∗

)
. Function g is well-defined, always

positive and clearly continuous. Since both 〈S\S∗〉 and X ∗
are compact, so is their product space. Thus there exists
D > 0 such that g is upper bounded by D.

For every x ∈ X , there exists λ ∈ [0, 1] such that x =
λx′ + (1− λ)x∗, with x′ ∈ 〈S\S∗〉 and x∗ ∈ X ∗. Then

d (x,X ∗) ≤ ‖x− x∗‖ = λ‖x′ − x∗‖

= λg(x∗,x′)

(∑
k∈K

x′k − u∗
)

≤ λD

(∑
k∈K

x′k − u∗
)

= D

(∑
k∈K

xk − u∗
)
.

B. PROOF OF PROPOSITION 15
Let δ > 0 be the same as in Proposition 14, and define

T = 3/δ. C > 0 will be chosen to be sufficiently large, whose
value will be determined later in the proof. Clearly, to prove
the proposition, it suffices to prove a stronger property

P
(
d
(
xr(Tr1−p),X ∗

)
≤ Crp−1 for all large r

)
= 1.

By Proposition 14, there exists C1 > 0 such that w.p.1,
for sufficiently large r, and for any interval [t0, t0 + rp−1] ⊂
[0, T r1−p], if d (xr(t0),X ∗) ≥ C1r

p−1, then

F r
(
Xr(tr0 + rp−1)

)
− F r

(
Xr(tr0)

)
≤ −δr2p−1. (34)

We pick some r such that the above statement holds, and
that furthermore, for every t0 ∈ [0, T r1−p] and ξ ∈ [0, 1],

d
(
Xr(tr0 + ξrp−1),Xr(tr0)

)
≤ O(rp). (35)

This can be done by Corollary 13.
Now claim that d(xr(Tr1−p),X ∗) ≤ Crp−1. To estab-

lish the claim, we consider the set L = {` ∈ Z+ : `rp−1 ∈
[0, T r1−p]}, and prove that

(a) there exists `0 ∈ L such that d(xr(`0r
p−1),X ∗) ≤ C1r

p−1,
and

(b) there exists C2 > 0 such that for all ` ∈ L with ` ≥ `0,
F r
(
Xr(`rp−1)

)
≤ ru∗ + C2r

p.

First suppose that (a) does not hold. Then for every ` ∈ L,
d(xr(`rp−1),X ∗) ≥ C1r

p−1, so

F r
(
Xr((`+ 1)rp−1)

)
− F r

(
Xr(`rp−1)

)
≤ −δr2p−1.

Let ¯̀ = dTr2(1−p)e. Summing these inequalities over `, we
obtain

F r
(
Xr(¯̀rp−1)

)
− F r

(
Xr(0)

)
≤ −¯̀δr2p−1

≤ −(Tr2(1−p) − 1)δr2p−1 = −Tδr + δr2p−1.

Thus,

F r
(
Xr(¯̀rp−1)

)
≤ F r

(
Xr(0)

)
− Tδr + δr2p−1

≤ r − 3

δ
δr + δr2p−1 < 0.

This contradicts the nonnegativity of F r, so statement (a)
is established.

To establish statement (b), we use the following simple
lemma, whose proof is omitted.

Lemma 22. Let K,α and β be given positive constants.
Consider a sequence of real numbers {an} that satisfies: (i)
a0 ≤ K, (ii) an+1 − an ≤ α, and (iii) if an ≥ K, then
an+1 − an ≤ −β. Then maxn an ≤ K + α.

We will establish the following corresponding statements:
(i) F r

(
Xr(`0r

p−1)
)
≤ ru∗ + C1r

p. Recall that we have

d
(
xr(`0r

p−1),X ∗
)
≤ C1r

p−1, so by Lemma 4,

F r
(
Xr(`0r

p−1)
)
− ru∗ ≤

∑
k∈K

Xr
k(`0r

p−1)− ru∗

≤ rd
(
xr(`0r

p−1),X ∗
)
≤ C1r

p.

(ii) There exists C3 > 0 such that F r
(
Xr((`+ 1)rp−1)

)
−

F r
(
Xr(`rp−1)

)
≤ C3r

p. This is clear, since by Lemma 4,
F r (Xr) differs from

∑
kX

r
k by O(rp), and the change in

Xr is at most O(rp) over an interval of length r1−p.
(iii) If F r

(
Xr(`rp−1)

)
≥ ru∗ + C1r

p, then

F r
(
Xr((`+ 1)rp−1)

)
− F r

(
Xr(`rp−1)

)
≤ −δr2p−1.

To see this, suppose that F r
(
Xr(`rp−1)

)
≥ ru∗ + C1r

p.

Then d
(
xr(`rp−1),X ∗

)
≥
∑

k∈K x
r
k−u∗ ≥ 1

r
F r
(
Xr(`rp−1)

)
−

u∗ ≥ C1r
p−1, and we must have

F r
(
Xr((`+ 1)rp−1)

)
− F r

(
Xr(`rp−1)

)
≤ −δr2p−1.

By Lemma 22, for all ` ∈ L with ` ≥ `0, we have

F r
(
Xr(`rp−1)

)
≤ ru∗ + (C1 + C3) rp = ru∗ + C2r

p,

by letting C2 = C1 +C3. This establishes statement (b). In

particular, for ¯̀= dTr2(1−p)e,

F r
(
Xr(¯̀rp−1)

)
≤ ru∗ + C2r

p.

Now by (35), the difference betweenXr(Tr1−p) andXr(¯̀rp−1)
isO(rp). Furthermore, the difference between F r

(
Xr(¯̀rp−1)

)
and Xr(¯̀rp−1) also O(rp). This implies that∑

k∈K

Xr
k(Tr1−p)− ru∗ ≤ C2r

p +O(rp).

Thus, there exists C > 0 such that∑
k∈K

xrk(Tr1−p)− u∗ ≤ C

D
rp−1.

By Lemma 3,

d(xr(Tr1−p),X ∗) ≤ D

(∑
k∈K

xrk(Tr1−p)− u∗
)

≤ D · C
D
r1−p = Cr1−p,

and we have established the claim. Therefore, w.p.1,

d(xr(Tr1−p),X ∗) ≤ Cr1−p,

for all sufficiently large r. This establishes the proposition.
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The general approach of the proof is similar to that of The-

orem 2 (ii) in [5], in that it is based on the process generator
estimates for the exponent eΦ, where Φ is a function on the
state space. However, the function Φ in our case is much
different, and so are the specifics of the estimates. Consider
fixed i ∈ I and r. For notational convenience, we drop the
subscript i and superscript r from all quantities considered
in this proof. The Markov chain U(·) = (Ŷ (·), Ỹ (·)) has
infinitesimal transition rate matrix ξ given by

ξ(u,u+ v)→


λr, if v = (1,−1 · 1{ỹ>0}),
µŷ, if v = (−1, 1),
µ0ỹ, if v = (0,−1),
0, otherwise,

where u = (ŷ, ỹ). We consider A the infinitesimal generator
of the Markov chain U(·), defined by

AG(u) =
∑
u′

ξ(u,u′)
(
G(u′)−G(u)

)
, (36)

for all functions G : Z2
+ → R in the domain of A. We also

consider the formal operator Ā, defined (similar to Eq. (36))
by

ĀG(u) =
∑
u′

ξ(u,u′)
(
G(u′)−G(u)

)
, (37)

for all functions G : Z2
+ → R. Similarly to [5], it is easy

to observe that the following property holds: if a function
G takes a fixed constant value on the entire state space,
except maybe a finite subset, then G is within the domain
of A, AG = ĀG, and moreover

E[AG(U)] = E[ĀG(U)] = 0, (38)

where the expectation is taken w.r.t the stationary distribu-
tion of the Markov chain U(·).

First, define the (candidate) Lyapunov function G : Z2
+ →

R by

G(u) = exp

(
1√
r
h(u)

)
,

where h(u) =
√

(ŷ − ρr)2 + µ0
µ
ỹ2. Note that, for an arbi-

trary b ≥ 0, the truncated function

Ḡ(b)(u) = exp

(
h(u)√
r
∧ b
)

is constant outside a finite subset and therefore, by (38),

E[ĀG(b)(U)] = 0. (39)

Also note that,

ĀG(b)(u) ≤ ĀG(u), if h(u)/
√
r ≤ b,

ĀG(b)(u) ≤ 0, if h(u)/
√
r ≥ b.

Similar to [5], the following inequality can be derived, us-
ing Taylor expansion. There exists some constant c2 > 0
such that for sufficiently large r,

ĀG(u) ≤ G(u)

(
1√
r
Āh(u) +

c2
r

(λr + µŷ + µ0ỹ)

)
. (40)

The term G(u)√
r
Āh(u) captures the first-order change inG(u),

and c2G(u)
r

(λr+µŷ+µ0ỹ) bounds the second-order change.

Here we used the fact that h is Lipschitz continuous and
‖u‖ is changed by at most 1 by any single transition. Now
consider the term Āh(u). We use the following inequality
to bound Āh(u):√

(x+ a)2 + (y + b)2 −
√
x2 + y2 ≤ ax+ by + a2 + b2√

x2 + y2
.

To verify this inequality, note that first,(√
(x+ a)2 + (y + b)2

)2

≤

(√
x2 + y2 +

ax+ by + a2 + b2√
x2 + y2

)2

,

and second,√
x2 + y2 +

ax+ by + a2 + b2√
x2 + y2

≥ 0.

Thus,

Āh(u) ≤ (λr − µŷ)(ŷ − ρr)− (λr − µŷ + µ0ỹ)(µ0ỹ/µ)√
(ŷ − ρr)2 + µ0ỹ2/µ

+
c3(λr + µŷ + µ0ỹ)√
(ŷ − ρr)2 + µ0ỹ2/µ

=
−µ

2
(ŷ − ρr)2 − µ2

0
2µ
ỹ2 − µ

2
(ŷ − ρr + ỹ)2√

(ŷ − ρr)2 + µ0ỹ2/µ

+
c3(λr + µŷ + µ0ỹ)√
(ŷ − ρr)2 + µ0ỹ2/µ

≤
−µ

2
(ŷ − ρr)2 − µ2

0
2µ
ỹ2

h(u)
+
c3(λr + µŷ + µ0ỹ)

h(u)

≤ − c4h(u) +
c3√
r

(λr + µŷ + µ0ỹ), (41)

for some positive constants c3 and c4, and when h(u) ≥
√
r.

Combining Inequalities (40) and (41), we have

ĀG(u) ≤ G(u)

(
− c4√

r
h(u) +

c2 + c3
r

(λr + µŷ + µ0ỹ)

)
.

Consider the term in the bracket on the RHS. It is now an
elementary calculation to see that there exists some positive
constant c5, such that whenever h(u) ≥ c5

√
r,

− c4√
r
h(u) +

c2 + c3
r

(λr + µŷ + µ0ỹ) ≤ −1.

Also note that when h(u) < c5
√
r, the maximum values of

G(u) and G(u)

(
− c4√

r
h(u) +

c2 + c3
r

(λr + µŷ + µ0ỹ)

)
are both bounded above by an absolute constant, say c6,
which does not depend on r. In summary,

ĀG(u) ≤ −G(u) whenever h(u) ≥ c5
√
r,

and ĀG(u) ≤ c6 whenever h(u) < c5
√
r.

Thus, for any b > c5,

0 = E[AG(b)(U)] ≤ E[ĀG(U)1{c5
√
r≤h(U)≤b

√
r}]

+E[ĀG(U)1{h(U)<c5
√
r}]

≤ −E[G(U)1{c5
√
r≤h(U)≤b

√
r}] + c6.

This implies that E[G(U)1{c5
√
r≤h(U)≤b

√
r}] ≤ c6, and then

E[G(U)1{h(U)≤b
√
r}] ≤ 2c6. Finally, by Monotone Conver-

gence, E[G(U)] ≤ 2c6. This completes the proof.


