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MAXWEIGHT SCHEDULING IN A GENERALIZED SWITCH:
STATE SPACE COLLAPSE AND WORKLOAD MINIMIZATION

IN HEAVY TRAFFIC

BY ALEXANDER L. STOLYAR

Bell Labs, Lucent Technologies

We consider a generalized switch model, which includes as special cases
the model of multiuser data scheduling over a wireless medium, the input-
queued cross-bar switch model and a discrete time version of a parallel server
queueing system. Input flows n = 1, . . . ,N are served in discrete time by a
switch. The switch state follows a finite state, discrete time Markov chain.
In each state m, the switch chooses a scheduling decision k from a finite
set K(m), which has the associated service rate vector (µm

1 (k), . . . ,µm
N(k)).

We consider a heavy traffic regime, and assume a Resource Pool-
ing (RP) condition. Associated with this condition is a notion of workload
X = ∑

n ζnQn, where ζ = (ζ1, . . . , ζN ) is some fixed nonzero vector with
nonnegative components, and Q1, . . . ,QN are the queue lengths. We study
the MaxWeight discipline which always chooses a decision k maximizing∑

n γn[Qn]βµm
n (k), that is,

k ∈ arg max
i

∑
n

γn[Qn]βµm
n (i),

where β > 0, γ1 > 0, . . . , γN > 0 are arbitrary parameters. We prove
that under MaxWeight scheduling and the RP condition, in the heavy
traffic limit, the queue length process has the following properties: (a) The

vector (γ1Q
β
1 , . . . , γNQ

β
N ) is always proportional to ζ (this is “State Space

Collapse”), (b) the workload process converges to a Reflected Brownian
Motion, (c) MaxWeight minimizes the workload among all disciplines.
As a corollary of these properties, MaxWeight asymptotically minimizes the
holding cost rate ∑

n

γnQ
β+1
n

at all times, and cumulative cost (with this rate) over finite intervals.

1. Introduction. In this paper, we study the following model in the heavy
traffic regime. Multiple input flows, indexed by n = 1, . . . ,N , each with its own
queue, are served by a generalized switch. The system operates in discrete time
t = 0,1,2, . . . ; in particular, customers can only arrive and depart at integer time
points. Switch states are random and follow a finite state, discrete time Markov
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chain. Each state m of the switch has an associated finite set K(m) of scheduling
decisions (which can also be called processing modes). If m is the switch state at
time t and a decision k ∈ K(m) is chosen, then queue service rates (at time t) are
given by a vector (µm

1 (k), . . . ,µm
N(k)) with nonnegative integer components. This

means that µm
n (k) customers of flow n (or the entire queue n content at time t ,

whichever is less) are served and depart the system by time t + 1.
Our primary motivation for considering this model is the problem of scheduling

multiple data flow transmissions over a wireless environment (see [1, 18, 27, 30,
31]). In terms of this problem, the N input flows represent data flows which need
to be transmitted to N mobile users from a single or multiple radio transmitters.
The time is slotted. For each time slot, a (scheduling) decision has to be made
as to which transmitters should send data to which mobiles, and at which rates.
In the simplest case when there is only one transmitter, only one user can be
served in one slot, and transmission rates are fixed, there are exactly N scheduling
decisions, namely, “which of the N users to serve.” In general, multiple users can
be picked for service in one slot, and the data rates that can be assigned to the
transmissions are user dependent (due to differences in radio channel quality) and,
moreover, highly interdependent (due to transmitter power constraints and mutual
radio signal interference). Our model is not concerned with the exact nature of
the transmission rate constraints and dependencies; it simply assumes that there
are a finite number of scheduling decisions that can be made, and each decision
has an associated vector of transmission (service) rates. Another essential feature
of a wireless environment is that it changes randomly with time, because of the
random channel quality variations. The “switch state” in our model corresponds
to a random state of the wireless environment, and different states typically have
different sets of scheduling decisions. Our model assumption that the switch state
follows a finite state Markov chain corresponds to the assumption that the radio
environment changes with time in a random but “sufficiently stationary” way.
We finally note that, in the heavy traffic regime we study in this paper, the time slot
duration will be much shorter than typical data packet (customer) delays. This is
in fact the case for many modern wireless technologies (see, e.g., [17]).

The generalized switch model also includes as a special case the much studied
input-queued cross-bar switch, with L input and output ports (see, e.g., [23,
24]). The N = L2 flows represent input-output port pairs (l1, l2). A scheduling
decision k is an input-output “matching,” that is, a subset of L pairs such that each
value of l1 and l2 appears only once. When a matching k is chosen, flows from this
matching are served at a certain (usually constant) rate.

Our model also includes a discrete time version of a parallel server system
(see [3, 13, 16, 36]). In this model, N input flows are served by L servers. In
each time slot, a server l can choose to serve one of the queues, and if it chooses
queue n, it serves it at the (integer) rate µnl > 0. A “switch” scheduling decision k

is then a combination of the decisions of the individual servers, k = (n1, . . . , nL),
and the rate at which each queue n is served is the sum of its service rates over
all servers which pick this queue. We should note that the continuous time parallel
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server system studied in [3, 13, 16, 36] is not within the framework of a generalized
switch. However, the approach of this paper has been subsequently applied in [22]
to the analysis of a continuous time parallel server system. In particular, it is shown
in [22] that most of the results of this paper (appropriately adjusted) do hold for
continuous time systems.

The generalized switch can be viewed as a (discrete time) parallel server
system, but with an additional feature that the servers are interdependent in an
arbitrarily complex way. (Another additional feature is the randomness of the
“environment.”) When such interdependence exists, the notion of “individual
server” (or “individual service resource”) loses its significance, and one needs to
consider the “server pool” as a single “aggregate service resource,” which we call
a “switch.” Such an interpretation, although somewhat superficial, highlights the
most important direction in which our model is more general than the parallel
server model. It also justifies to some degree our use of the term “resource
pooling” in the model where, formally, we do not identify individual resources;
in applications, however, what we call a switch may in fact consist of separate
resources with some (higher or lower) degree of interdependence.

The issue of stability of different versions of the generalized switch model is
very well studied ([1, 2, 9, 18, 23, 24, 30, 31]). One of the principal stability
results for this type of models is the fact that a simple MaxWeight scheduling
discipline attains the maximum stability region of the system; results of this
type are originally due to Tassiulas and Ephremides [30, 31]. Informally, the
(maximum) stability region is the set of mean flow rate vectors λ = (λ1, . . . , λN)

such that there exists a scheduling rule making the queue length process stable. The
closure of the stability region is a convex polyhedron V̄ , which we call (service)
rate region.

In the setting of this paper, the MaxWeight discipline is defined as follows.
In each time slot choose a scheduling decision

k ∈ arg max
i∈K(m)

∑
n

γn[Qn]βµm
n (i),

where m is the switch state, Q = (Q1, . . . ,QN) is the queue length vector in
the time slot, and β > 0, γ1 > 0, . . . , γN > 0 are an arbitrary set of parameters.
(In most of the previous work, MaxWeight with β = 1 and all γn = 1 was
studied.) As demonstrated in the previous work on stability (and can be seen
from the above definition), the underlying idea behind the MaxWeight algorithm
is that, roughly speaking, it tries to minimize the average drift of the Lyapunov
function

∑
n γn[Qn]β+1 at all times. This idea plays an important role in our

analysis as well.
In the special case of a (discrete time) parallel server system, the MaxWeight

discipline reduces to a particularly simple scheduling rule: each server l serves
a queue

n ∈ arg max
i

γiµilQ
β
i .
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We consider a heavy traffic regime, when the vector λ of mean input rates
converges to some point v∗ on the outer (“north-east”) boundary of the rate
region V̄ . This roughly means that we study the asymptotic behavior as r → ∞ of
the diffusion-scaled queue length process (1/r)Q(r2t), t ≥ 0, assuming λ → v∗
fast enough as r → ∞ so that r(λ − v∗) approaches a fixed finite vector.

We assume that the limiting mean input rate vector v∗ satisfies the Resource
Pooling (RP) condition, which we define as uniqueness (up to scaling) of the vector
ζ = (ζ1, . . . , ζN ), which is the outer normal vector to the rate region V̄ at point v∗.
The vector ζ has nonnegative components, with at least one being strictly positive.
We refer to the quantity X = ∑

n ζnQn as the system workload, to the vector ζ as
the workload aggregator, and to its components ζn as workload contributions of
the corresponding flows (or queues).

RP conditions have been introduced in previous work on networks with dynamic
routing [20, 21] and parallel server systems [3, 13, 16, 36]. (This work is discussed
later in this section.) Also, this notion is closely related to the equivalent workload
formulation of the Brownian network control problems, developed relatively
recently (see [5, 14, 15] and references therein). Although our model is different
and we use different (“geometric”) language in the definition of the RP condition,
our definition is consistent with the previous work and the general equivalent
workload formulation. Very informally, the RP condition implies that, when we
consider the process under diffusion scaling, with the appropriate control, the
service system (switch in our case) can instantly “transition” a queue length vector
Q to any vector Q+�Q, such that �Q is orthogonal to ζ (and all components of
Q + �Q are nonnegative).

Our main result, Theorem 1, can be informally described as follows. Consider
the switch in the heavy traffic regime, and assume the RP condition. Then,
with probability 1 (“pathwise”), under MaxWeight scheduling, in the heavy
traffic (diffusion) limit, the (rescaled) queue length process has the following
properties: (a) State Space Collapse—the vector (γ1Q

β
1 , . . . , γNQ

β
N) is always

proportional to ζ ; (b) the (rescaled) workload process X converges to a one-
dimensional Reflected Brownian Motion (RBM); (c) this RBM is a lower bound
for the (rescaled) workload process limit under any discipline, that is, MaxWeight
asymptotically minimizes (rescaled) workload among all disciplines.

As we will show, it follows from properties (c) and (a) above that MaxWeight
asymptotically minimizes the value of

∑
n γnQ

β+1
n (with rescaled Qn) at all times.

If γnQ
β+1
n is interpreted as the rate at which queue n incurs holding cost, then this

implies that MaxWeight asymptotically minimizes cumulative holding costs over
finite intervals under diffusion scaling.

Our main result may seem somewhat surprising. Indeed, MaxWeight is an “on-
line” rule that only “needs to know” the current queue lengths and the current
set of available service rate vector choices. It does not need to know the mean
input rates λ or stationary probabilities of switch states m, and does not need
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any parameters to be “precalculated” before it is applied. And yet it has very
strong asymptotic optimality properties—workload minimization and, in addition,
holding cost minimization with γnQ

β+1
n cost rates. (Again, MaxWeight does not

need to know the workload aggregator ζ for these properties to hold.)
In addition, since the parameters β and γn can be chosen arbitrarily, the work-

load can be “distributed” among the queues with positive workload contribu-
tions ζn arbitrarily. For example, to keep the queue length vector proportional
(in the limit) to a fixed vector b = (b1, . . . , bN) ∈ R

N+ (with the constraint that
bn > 0 if and only if ζn > 0), it suffices to set β = 1 and γn = ζn/bn. This would
require knowledge of the workload aggregator ζ , however. Assuming the RP
condition holds, the State Space Collapse property of MaxWeight allows one to
estimate ζ from queue length measurements. Namely, in applications, γn’s can
initially be set arbitrarily (for example all 1’s), then ζ can be estimated by the
average observed value of the vector (Q1, . . . ,QN), and then γn’s can be reset
to γn = ζn/bn. We believe that these properties of the MaxWeight discipline make
it very attractive for applications.

The basic intuition behind such “nice” system behavior under MaxWeight is
roughly as follows. We prove that, under the RP condition, sample paths of the
fluid process (we call them fluid sample paths) corresponding to a critically loaded
system (i.e., with input rates on the outer boundary of the rate region), are such
that the vector (γ1Q

β
1 , . . . , γNQ

β
N) is attracted to the one-dimensional manifold

of vectors proportional to ζ . This implies the State Space Collapse property (a)
above, and therefore, as long as total queue length is nonzero, the MaxWeight rule
“reduces to” the rule choosing

k ∈ arg max
i∈K(m)

∑
n

ζnµ
m
n (i).

This rule is precisely the rule which maximizes the service rate of workload, as
long as the total queue is nonzero. More concisely:

Under the RP condition, MaxWeight “induces” State Space Collapse, which in
turn is precisely such that MaxWeight maximizes the service rate of the workload.

The general notion of State Space Collapse (SSC), meaning that the limiting
process (Q in our case) “lives” on a manifold of lower dimension than the
original one (in our case, dimension 1), goes back to the papers of Whitt [33] and
Reiman [25, 26]. For multiclass queueing networks, a quite general theory of the
heavy traffic SSC and convergence of the processes describing network behavior
to Semimartingale Reflected Brownian Motions (SRBM) has been recently
developed by Bramson [4] and Williams [35]. (See also [6].) Our generalized
switch model is not within the framework of multiclass networks. The main
difference is that each node of a multiclass network has an inherent workload
conservation property: even in a pre-limit system, the unfinished work present in
the node is served at the maximum possible rate (as long as there is nonzero amount
of work). There is no such property for the workload of the generalized switch.
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(The workload service rate can in principle be “wasted” even when queues are
arbitrarily large.) The switch workload conservation property under MaxWeight
holds only in the limit, and this is the key part that needs to be proved (and which
in turn implies workload minimization among all disciplines). As explained above,
given MaxWeight is the scheduling being employed, SSC along a very specific line
“needs to occur” to ensure workload conservation in the limit, and MaxWeight
does induce precisely such SSC. Despite the difference of the frameworks, the
general approach of [4] and [35] can be applied here. More specifically, our
technique of demonstrating SSC is similar to that of [4]. The technique involves
breaking down an order O(r2)-long time interval into O(r)-long intervals, and
then analyzing behavior of fluid-scaled processes [under (1/r)Q(rt) scaling] on
those O(r)-long intervals. Since, for large r , sample paths of fluid-scaled processes
are close to the fluid sample paths (mentioned above), the attraction property
of the latter is used to show that (asymptotically) (γ1Q

β
1 , . . . , γNQ

β
N) must stay

proportional to ζ .
Several heavy traffic models, related to ours, have been considered in the

literature. A continuous time parallel server model under the Complete Resource
Pooling (CRP) condition was studied by Bell and Williams [3], Harrison [13],
Harrison and Lopez [16] and Williams [36]. (The CRP condition requires that, in
addition to the RP assumption, workload contributions ζn of all flows are strictly
positive.) The optimality criterion in this work is the pathwise minimization of
both workload and expected discounted cumulative linear holding costs (with cost
rates cnQn, cn > 0). In [13, 16] discrete review policies have been proposed. Their
asymptotic optimality was proved in [13] for a two-server model, and conjectured
for the general model in [16], based on the derived optimal solution of associated
Brownian control problem. Continuous review threshold rules for this model were
proposed and proved optimal in [3, 36]. Both the discrete review and continuous
review threshold rules require a priori knowledge of workload contributions ζn

(in our notation), which in turn depend on the mean rates λ. We note that the
MaxWeight rule does not solve the linear cost minimization problem for our
model. Any solution to this problem requires that, in the limit, all workload is
“kept” in the queues n with the smallest ratio cn/ζn. However, the MaxWeight rule
can be used to obtain an approximate solution, for example, by setting γn = cn for
all n and choosing small β > 0. Another option is to set β = 1, and set all γn = 1
for all n except for one queue with the smallest cn/ζn; for this latter queue, γn

is set to a small positive value. It is easy to see that with both options, almost all
workload will be kept in the queues with the smallest cn/ζn.

A queueing network with dynamic routing in the heavy traffic regime has been
considered by Laws [21]. (See also [20] for a review of related models.) Although
the model in [21] is different from ours, the system behavior is very similar: the
paper shows heavy traffic workload minimization and SSC under the RP condition
and under a dynamic routing algorithm which seeks to minimize the expected end-
to-end delay of each customer. We note that the RP condition in [21] implies
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uniqueness of the outer normal vector to the boundary of the rate region, and
therefore our RP condition is consistent with that in [21]. The RP condition in [21]
also allows zero workload contributions of some flows, and workload contributions
do not need to be precomputed.

A model very similar to ours is analyzed by Gans and van Ryzin [11, 12].
Essentially, the model is a generalized switch with only one switch state; that is,
there is no random “service environment.” The analysis is quite different, though.
The heavy traffic regime is such that the mean rate vector λ (in our terminology)
approaches the outer boundary of the rate region “from inside”; in other words,
λ always remains within stability region. (Our heavy traffic regime, as well as that
in [3, 13, 16, 20, 21, 36], allows λ to approach the rate region boundary from any
direction.) Asymptotic optimality is defined in terms of the average total queue
length minimization in the stationary regime, and is proved for a certain “batch”
processing discipline. The discipline requires a priori knowledge of λ.

A multiuser variable channel scheduling model in heavy traffic (motivated by
a scheduling problem in wireless systems) has been considered by Buche and
Kushner [7]. This model has a constraint that “one user can be served at a time,”
although possible generalizations are mentioned. The controls proposed in [7]
require that most of the service resources be “preallocated” based on the input
rates and channel statistics, and only a small portion of the resources is used for
dynamic control. The asymptotic optimality under various criteria is proved.

The rest of the paper is organized as follows. In Section 2 we introduce basic
notations, definitions, and conventions used in the paper. We introduce the formal
model in Section 3. In Section 4 the conditions defining the system stability
region are described, and in Section 5 the MaxWeight scheduling rule is defined.
We define the rate region and introduce the RP condition in Section 6. Sections
7 and 8 contain the definition of the heavy traffic regime and scaling, and the
statement of our main result, Theorem 1. In Section 9 we discuss main assumptions
of Theorem 1, and also conjecture a very plausible result on the asymptotics
of stationary distributions. The key technical intuition behind the main results
is discussed in Section 10. In Section 11 sample paths of a fluid limit process
are defined, and their key attraction property is proved. Finally, the main result,
Theorem 1, is proved in Section 12. A discussion and concluding remarks are
presented in Section 13.

2. Notation. We will use standard notations R and R+ for the sets of real and
real nonnegative numbers, respectively; and a not quite standard notation R++ for
the set of strictly positive real numbers. Corresponding N -times product spaces are
denoted R

N , R
N+ and R

N++. The space R
N is viewed as a standard vector-space,

with elements p ∈ R
N being row-vectors p = (p1, . . . , pN). Vector inequalities

p ≤ q and p < q are understood componentwise. The scalar product (dot-product)
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of p, q ∈ R
N is

p · q .=
N∑

n=1

pnqn;

and the norm of q is

‖q‖ .= √
q · q.

For γ , x ∈ R
N , we will denote

γ × q
.= (γ1q1, . . . , γNqN).

We will slightly abuse notation by applying power operation componentwise:

qβ .= (q
β
1 , . . . , q

β
N) for q ∈ R

N+, β > 0,

and often write q(t)β to mean [q(t)]β where it does not cause confusion.
For ζ ∈ R

N , ζ 	= 0, and y ∈ R
N , we denote by

L(ζ )
.= {x ∈ R

N | ζ · x = 0}
the (N − 1)-dimensional linear subspace orthogonal to ζ , and by

L(ζ, y)
.= {x ∈ R

N | ζ · x = ζ · y}
the hyperplane parallel to L(ζ ) and containing y.

The angle between two nonzero vectors p, q ∈ R
N is defined in the usual way as

arccos
p · q

‖p‖‖q‖ .

We define the scaling operators �r and �̃r , r > 0, for a scalar function
h = (h(t), t ∈ A), A ⊆ R, as follows:

(�rh)(t)
.= 1

r
h(rt), t ∈ A/r

.= {ξ/r | ξ ∈ A}
and

(�̃rh)(t)
.= 1

r
h(r2t), t ∈ A/r2.

For any set of functions the operators �r and �̃r are applied componentwise.
For any scalar function h = (h(t), t ∈ R+), we define the shift operator θd ,

d ∈ R+, in the standard way:

(θdh)(t) = h(d + t), t ∈ R+;
and for sets of functions this operator is applied componentwise. [The standard
shift operator θd should not be confused with a different “special” shift opera-
tor 	(d), defined in Section 11.1.] The oscillation of function h over a subset
A ⊆ R+ is defined as

Osc(h;A)
.= sup

ξ1,ξ2∈A

|h(ξ1) − h(ξ2)|.
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The arg maxv∈V F (v) denotes the subset of elements of V maximizing the value
of a scalar function F(v). We sometimes write arg maxv F (v), if the domain of v

is clear from the context.
We denote by D([0,∞),R) the standard Skorohod space of right-continuous

left-limit (RCLL) functions defined on [0,∞) and taking real values.
(See, e.g., [10] for the definition of this space and associated topology and
σ -algebra.)

The symbol
w→ denotes convergence in distribution of random processes

(or other random elements), that is, weak convergence of their distributions.
Typically, we consider convergence of processes in D([0,∞),R) or its N -times
product space DN([0,∞),R) equipped with product topology and σ -algebra.

The symbol
u.o.c.→ (or the abbreviation u.o.c. after a convergence statement)

means uniform on compact sets convergence of elements of D([0,∞),R) or its
N -times product DN([0,∞),R). For functions with a bounded domain A ⊂ R,
the u.o.c. convergence means uniform convergence.

We reserve symbol ⇒ for the weak convergence of elements of the space
D([0,∞), R̄), which is the space of RCLL functions taking values in the set R̄

of real numbers extended by including two “infinite numbers” +∞ and −∞ (with
the natural topology on R̄). If h,g ∈ D([0,∞), R̄), then h ⇒ g means h(t) → g(t)

for every t > 0 where g is continuous. (Convergence at t = 0 is not required.)
We will not need any characterization of the topology on D([0,∞), R̄), beyond
the definition of convergence given above.

We will write simply 0 for the zero element of R
N and for identical zero

functions taking values in R and R
N .

We denote minimum and maximum of two real numbers ξ1 and ξ2 as ξ1 ∧ ξ2
and ξ1 ∨ ξ2, respectively; and by �ξ� and �ξ� the integer part and the ceiling of
a real number ξ , respectively.

3. The model. Consider the following queueing system. There is a finite
set N̄ = {1,2, . . . ,N} of input flows served by a generalized switch. Each
flow n consists of discrete customers, which we sometimes call type n customers.
Customers of each flow (type) waiting for service are queued in a separate queue
of infinite capacity. (Customers are never lost.)

The system operates in discrete time t = 0,1,2, . . . . By convention, we will
identify an (integer) time t with the unit time interval [t, t + 1), which will
sometimes be referred to as the time slot t ; and we will assume that all system
variables we consider are constant within each time slot.

The switch has a finite set of switch states M̄ . In each time slot, the switch is in
one of the states m ∈ M̄ ; and the sequence of states m(t), t = 0,1,2, . . . , forms an
irreducible (finite state) Markov chain with stationary distribution {πm,m ∈ M̄},

πm > 0,∀m ∈ M̄,
∑

m∈M̄

πm = 1.
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Each switch state m ∈ M̄ has an associated finite set K(m) of scheduling decisions,
which can also be called processing modes. If the switch state at time t is m and a
decision k ∈ K(m) is chosen, then the integer number µm

n (k) ≥ 0 customers of type
n ∈ N̄ are served (or the entire queue n content at time t , whichever is less) and
depart the system at time t + 1. The vector µm(k)

.= (µm
1 (k), . . . ,µm

N(k)) we will
call the service rate vector, corresponding to state m and decision k ∈ K(m).
We make a very natural nondegeneracy assumption that

for any n µm
n (k) > 0 for at least one pair of m and k ∈ K(m).(1)

New customer arrivals occur at times t = 1,2, . . . . Denote by An(t), t ≥ 1, the
number of type n customers arrived at time t , and assume by convention that
these customers are immediately available for service at time t . We assume that
each input process An is an ergodic (discrete time) Markov chain with countable
state space. We also assume that all input processes and the switch state process
m = (m(t), t = 0,1,2, . . . ) are mutually independent. Let us denote by λn, n ∈ N̄ ,
the mean arrival rate of flow n, that is, the mean number of type n customers
arriving in one time slot when the Markov chain An is in the stationary regime.
(The main results of this paper, pertaining to the heavy traffic asymptotic regime,
will require additional assumptions on the input flows. We will introduce those
assumptions later when we define the heavy traffic regime.)

The random process describing the behavior of the entire system is S = (S(t),
t = 0,1,2, . . . ), where

S(t) = {(
Un,1(t), . . . ,Un,Qn(t)(t)

)
,An(t + 1), n ∈ N̄;m(t)

}
,

Qn(t) is the type n queue length at time t (including new arrivals at time t),
and Unl(t) is the current delay (i.e., age in the system) of the lth type n customer
present in the system at time t . [Within each type, the customers are numbered
in the order of their arrivals. If Qn(t) = 0, the vector (Un,1(t), . . . ,Un,Qn(t)(t)) is
replaced by some special symbol, say “∅.”] Since the values of Qn(t), Un,j and
An(t + 1) are nonnegative integers, S is a (discrete time) process with countable
state space (defined in the obvious way).

A mapping G which takes a system state S(t) in a time slot into a fixed probabil-
ity distribution G(S(t)) on the set of scheduling decisions K(m) [with m = m(t)]
will be called a scheduling rule, or a queueing discipline. With a fixed discipline G,
the scheduling decision at time t is chosen randomly according to the distribu-
tion G(S(t)). If the scheduling decision k ∈ K(m(t)) is chosen at time t , then
Dn(t + 1) = min{Qn(t),µ

m(t)
n (k)} of type n customers are served and depart the

system at time t + 1. According to our conventions, for each flow n,

Qn(t) = Qn(t − 1) − Dn(t) + An(t), t = 1,2, . . . .

Our assumptions imply that with any scheduling rule, S is a discrete time,
countable state Markov chain. By stability of the Markov chain S (and stability
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of the system) we mean the following property: the set of positive recurrent states
is nonempty, and it contains a finite subset which is reached with probability 1
(within finite time) from any initial state. Stability implies the existence of
a stationary probability distribution. (If all positive recurrent states are connected,
the stationary distribution is unique.)

4. Static Service Split rule and system stability region. Suppose, for each
of its states m ∈ M̄ , a subprobability measure φm = (φmk, k ∈ K(m)) is fixed,
which means that φmk ≥ 0 for all k ∈ K(m), and

∑
k φmk ≤ 1.

Consider a Static Service Split (SSS) scheduling rule, parameterized by the set
of measures φ

.= (φm, m ∈ M̄). When the switch is in state m, the SSS rule chooses
one of the scheduling decisions k ∈ K(m) randomly with probability φmk , and
with probability 1 − ∑

k φmk does not serve any of the queues. Then, clearly, the
long-term service rate allocated to flow n ∈ N̄ is equal to

vn = ∑
m∈M̄

πm

∑
k∈K(m)

φmkµ
m
n (k).

Sometimes, we will call a measure φ itself an SSS rule. We will denote
by v(φ) the function which maps an SSS rule φ into the corresponding vector
v = (v1, . . . , vN ), as defined above.

The following simple observation is quite standard (and essentially trivial).

PROPOSITION 1. Let λ ∈ R
N+ be the vector of mean rates. Then, for the

existence of a scheduling rule G under which the system is stable, condition

λ ≤ v(φ) for at least one SSS rule φ(2)

is necessary, and condition

λ < v(φ) for at least one SSS rule φ(3)

is sufficient.

The proof of Proposition 1 is very intuitive, and is outlined as follows.
(See, e.g., [1] for more details.) If (3) holds, then the SSS rule φ allocates to each
flow the average service rate vn(φ) > λn, which easily implies stability. If the
system is stable under some rule G, then we consider the process in a stationary
regime, and denote by φmk the (well-defined) average fraction of time slots when
decision k is chosen, among the slots when the switch state is m. These values
of φmk form the set φ for which (2) must hold; otherwise, one of the queue lengths
would run away to infinity with probability 1.

Proposition 1 motivates the following definition. The set

V 0 = {
λ ∈ R

N+ | (3) holds
}

we will call the system maximum stability region, or just stability region.
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5. The MaxWeight discipline. It has been shown relatively recently that
there are scheduling rules which (unlike SSS) do not use a priori information about
mean rates λn and the stationary distribution π of the switch state, and yet ensure
system stability as long as condition (3) is satisfied. In particular, the MaxWeight
discipline, which we define shortly, has this property. (There are numerous results
on MaxWeight stability for different special cases of our model. The first results
of this type were obtained probably in [30, 31]. For the model we consider in this
paper, the MaxWeight stability was proved in [1].)

Let us call the value

Wn(t) ≡ Un1(t)

[with Wn(t) = 0 if Qn(t) = 0 by convention] the delay of flow n at time t .

MaxWeight discipline. Let a set of positive constants β and γn, n ∈ N̄ , be
fixed. When the switch is in state m ∈ M̄ (in a time slot t), a scheduling decision k

is chosen from the following subset:

k ∈ arg max
i∈K(m)

∑
n∈N̄

γn[Vn(t)]βµm
n (i),(4)

where for each n, Vn(t) = c
Q
n Qn(t) + cW

n Wn(t), with fixed constants c
Q
n ≥ 0 and

cW
n ≥ 0, cQ

n +cW
n > 0. (The “ties” are broken arbitrarily, e.g., in favor of the largest

index n.)

PROPOSITION 2 ([1]). Let an arbitrary set of positive constants β and γn,
n ∈ N̄ , be fixed. Then MaxWeight scheduling rule has the maximum stability
region; namely, it makes the system stable as long as condition (3) holds.

The proof of Proposition 2 is a straightforward extension of the proof of
Theorem 3 in [1]. In fact, our analysis of the fluid sample paths under MaxWeight
in Section 11.2 is (in a certain respect) a “superset” of such analysis in [1]
which leads to establishing the MaxWeight stability. (See the remark following
the statement of Lemma 5 for more detailed comments.)

In the rest of this paper we consider the MaxWeight rule with Vn(t) = Qn(t),
that is, the rule choosing

k ∈ arg max
i∈K(m)

∑
n∈N̄

γn[Qn(t)]βµm
n (i),(5)

although all results (appropriately adjusted) hold for the more general MaxWeight
rule defined above, with Vn being a linear combination of queue length Qn and
delay Wn.
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6. RP condition. Let us denote by V the set of all service rate vectors v(φ)

corresponding to all possible SSS rules φ. In our case, V is a convex polyhedron
in R

N+ (as a linear image of the convex polyhedron of possible values of φ). The
polyhedron V may turn out to be degenerate (i.e., have dimension less than N ),
but due to the nondegeneracy assumption (1), it contains at least one vector v with
all positive components, v > 0.

Let us also consider the set

V̄
.= {

u ∈ R
N+ | u ≤ v for at least one v ∈ V

}
,

which we call system service rate region, or just rate region. Rate region V̄ is also
a convex polyhedron, and it is nondegenerate (has dimension N ), since V contains
at least one vector with all positive components.

Note that rate region V̄ is nothing else but the closure of the system stability
region V 0, defined earlier. This of course implies that V̄ and V 0 have the
same boundary.

Let V̄ ∗ denote the outer (“north-east”) boundary of V̄ :

V̄ ∗ .= {u ∈ V̄ | there is no v ∈ V̄ such that u < v}.
Since V̄ is a nondegenerate polyhedron, V̄ ∗ consists of a finite number of
(N − 1)-dimensional faces.

DEFINITION. We will say that the RP condition holds for a vector v∗ if
v∗ ∈ V̄ ∗ and the outer normal vector to V̄ at point v∗ is unique (up to a scaling).
Equivalently, the RP condition holds if v∗ lies in the (relative) interior of one of
the faces of V̄ ∗.

Note that the RP condition for v∗ implies that v∗ ∈ R
N++, and the corresponding

outer normal vector ζ is such that ζ ∈ R
N+ . By convention, we assume that if the RP

condition holds, then ζ is the vector defined uniquely by the additional condition

‖ζ‖ = 1.(6)

Note also that the subset of v ∈ V̄ maximizing ζ · v,

V̄ (ζ )
.= arg max

v∈V̄

ζ · v,

is nothing else but the face of V̄ ∗ containing v∗:

v∗ ∈ V̄ (ζ ).(7)

DEFINITION. If vector v∗ satisfies the RP condition, and in addition all
components of the corresponding normal vector ζ are strictly positive, ζ ∈ R

N++,
we say that v∗ satisfies the CRP condition.
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We defer the discussion of the RP and CRP conditions until after the formulation
of the main results in the next section.

Our purely geometric definition of the RP condition (as uniqueness of the
outer normal vector at point v∗) is consistent with the RP notion introduced in
the previous work on networks with dynamic routing [20, 21] and on parallel
server systems [3, 13, 16, 36], and with the canonical workload representation for
Brownian network control problems [14]. In the work cited above, the requirement
that v∗ is on the rate region outer boundary, the RP condition and the associated
normal ζ are defined in terms of a certain linear program and its dual, with the
geometric interpretation (which we use as a definition) being implicit. In our case,
a linear programming characterization of the RP condition is also possible, but
since it is not required for the MaxWeight definition and is not used in the analysis,
we present it in the Appendix.

7. Heavy traffic assumptions. Consider a sequence of systems, indexed
by r ∈ R = {r1, r2, . . . }, where ri > 0 for all i and ri ↑ ∞ as i → ∞. (Hereafter
in this paper “r → ∞” means that r goes to infinity by taking values from the
sequence R, or some subsequence of R; the choice of a subsequence will be clear
in each case from the context.) From this point on in the paper, the quantities
pertaining to the r th system will be supplied with a superscript r .

Assume that, as r → ∞, the vector of mean rates λr = (λr
1, . . . , λ

r
N) converges

to some fixed vector λ ∈ R
N++ lying on the outer boundary V̄ ∗ of the system rate

region V̄ :

λr → λ ∈ V̄ ∗,(8)

and, moreover,

vector λ satisfies the RP condition.(9)

Let ζ be the (unique) normal vector ζ associated with the RP condition for point λ.
Recall that ζ ∈ R

N+ and ζ 	= 0.
Assume, in addition, that the convergence in (8) is such that

r(ζ · λr − ζ · λ) → a,(10)

where a ∈ R.
The quantity

Xr(t)
.=

N∑
n=1

ζnQ
r
n(t) = ζ · Qr(t),

where Qr(t) = (Qr
1(t), . . . ,Q

r
N(t)) is the queue length vector at time t , will be

referred to as the workload of the switch. The vector ζ will be called the workload
aggregator, and its components ζn will be called workload contributions of the
corresponding flows (or queues).
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We make the following additional assumptions on the input flows. For
each n ∈ N and each r ,

Ar
n(t), t = 1,2, . . . , are i.i.d.,(11)

which in particular means

E[Ar
n(1)] = λr

n,(12)

and also

Var[Ar
n(1)] → σ 2

n ≥ 0, r → ∞(13)

and

E[Ar
n(1)]2I {Ar

n(1) > z} ≤ η(z),(14)

where η(·) is a fixed function, η(z) → 0 as z → ∞, and I {·} is the indicator
function. Assumption (14) is a Lindeberg type condition required to apply a
functional central limit theorem (FCLT). This condition will also allow us to use
Bramson’s weak law estimates ([4], Proposition 4.2) in Section 12.

We assume that the underlying Markov chain for the switch state process

mr(·) does not change with r,(15)

in the sense that it has the same probability law as the Markov chain m(·)
defined earlier.

8. Main results. Let us apply the diffusion scaling to the processes Qr and Xr

to define the following scaled processes:

q̃r (t)
.= r−1Qr(r2t), t ≥ 0, x̃r (t)

.= r−1Xr(r2t), t ≥ 0.

Let ν denote the vector such that γ × νβ is proportional to ζ and ζ · ν = 1:

ν
.=

[∑
n

γ −1/β
n ζ 1+1/β

n

]−1

(γ
−1/β
1 ζ

1/β
1 , . . . , γ

−1/β
N ζ

1/β
N ).

Any vector cν, c ≥ 0, proportional to ν (including the zero vector) we will call
an invariant point, and the set of all invariant points will sometimes be called the
invariant manifold.

We assume that initial states of the scaled processes converge to an invari-
ant point:

q̃r (0) → q̃◦(0) = x̃◦(0)ν,(16)

where x̃◦(0) ≥ 0 is a fixed constant. Convergence (16) of course implies
x̃r (0) → x̃◦(0).

Let us define the Brownian motion

w̃ = (
x̃◦(0) + at + σB(t), t ≥ 0

)
,(17)
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where B is a standard (zero drift, unit variance) Brownian motion, a is the
parameter in (10), and

σ 2 .= σ 2
s + ∑

n

ζ 2
n σ 2

n ,

where the parameter σ 2
s depends on ζ and the Markov chain m(·), and is defined

later in (32).
For the Brownian motion process w̃ defined in (17), let us consider the

corresponding RBM x̃◦ = (x̃◦(t), t ≥ 0):

x̃◦(t) = w̃(t) + ỹ◦(t),(18)

where

ỹ◦(t) .= −
[
0 ∧ inf

0≤u≤t
w̃(u)

]
.(19)

[This implies that ỹ◦(0) = 0, and therefore w̃(0) = x̃◦(0).]

THEOREM 1. Consider the sequence of systems indexed by r ∈ R as
described above, and assume that conditions (8)–(16) hold.

(i) Suppose that the scheduling rule in the system is MaxWeight. Then,
as r → ∞,

x̃r w→ x̃◦,(20)

and, moreover, the following SSC holds:

q̃r w→ q̃◦ .= x̃◦ν.(21)

(ii) The MaxWeight rule is asymptotically optimal in that it minimizes the
workload process. More precisely, the workload process x̃r

G corresponding to an
arbitrary scheduling discipline G is such that, for any time t ≥ 0 and any u ≥ 0,

lim inf
r→∞ P {x̃r

G(t) > u} ≥ P {x̃◦(t) > u}.(22)

It will be clear from our proofs that both statements of Theorem 1 in fact hold
pathwise. That is, the limiting process q̃◦ and the sequences of processes under
MaxWeight and under arbitrary discipline G (q̃r and q̃r

G, resp.) can be constructed
on a common probability space so that, with probability 1, the following properties
hold: both (20) and (21) hold uniformly on compact sets and

lim inf
r→∞ x̃r

G(t) ≥ x̃◦(t) ∀ t ≥ 0.(23)

Moreover, as we show in the proof, q̃◦(t) is the unique vector minimizing the
function

∑
n γnp

β+1
n among all vectors p ∈ R

N+ with workload ζ · p = x̃◦(t).
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This easily implies that, with probability 1, MaxWeight minimizes cumulative
“power β + 1” costs over any fixed interval [t1, t2], that is,

lim inf
r→∞

∫ t2

t1

∑
n

γn[q̃r
n,G(t)]β+1 dt ≥ lim

r→∞

∫ t2

t1

∑
n

γn[q̃r
n(t)]β+1 dt

(24)

=
∫ t2

t1

∑
n

γn[q̃◦
n(t)]β+1 dt.

We see that the workload minimization property (22) [or (23)] is the primary
and (as discussed in Section 10) nontrivial “ingredient” implying MaxWeight
optimality (24) in the sense of cumulative costs. Also, it directly implies that
MaxWeight produces a “Pareto optimal” vector of queue lengths at any time t .
For these reasons, the MaxWeight workload minimization property in itself we
sometimes call optimality.

We will further discuss Theorem 1, in particular the RP condition and initial
condition (16), in the next section.

9. Discussion of main results.

9.1. A conjecture regarding asymptotics of stationary distributions. A natural
question is that of the asymptotics of stationary distributions of the processes q̃r .
We do not pursue this question in this paper, but the following short discussion,
including Proposition 3 and (very plausible) Conjecture 1, outlines a direction in
which this can be done.

PROPOSITION 3. Consider the sequence of systems indexed by r ∈ R as
described above, and assume that conditions (8)–(12) and (15) hold, and a < 0.
Then, under MaxWeight, for all sufficiently large r , the system is stable.

PROOF. Since λ lies in the interior of the face V̄ (ζ ) and ζ is an outer normal
to that face, conditions a < 0, (8) and (10) imply that λr ∈ V 0 for all large r .
Therefore, by Proposition 2, the system is stable for large r . �

It is well known that, if the drift a < 0, then the limiting RBM x̃◦ has
exponential stationary distribution:

P {x̃◦(∞) > ξ} = exp{(2a/σ 2)ξ}, ξ ≥ 0,

where x̃◦(∞) denotes a random variable distributed as x̃◦(t) is stationary regime.
Then it is natural to conjecture that (in the case a < 0) the limit of a sequence of
stationary distributions is equal to the stationary distribution of the limit.
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CONJECTURE 1. Consider the sequence of systems indexed by r ∈ R as
described above, and assume that conditions (8)–(15) hold, and a < 0. Then, under
MaxWeight, as r → ∞,

q̃r (∞)
w→ x̃◦(∞)ν,

where q̃r (∞) is a random vector with distribution equal to a stationary
distribution of q̃r .

Conjecture 1 along with Theorem 1 implies that the stationary distribution
of x̃◦ is a stochastic lower bound of any weak limit of a sequence of stationary
distributions of x̃r

G under any scheduling rule G.

9.2. RP condition. Our main result on the optimality of the MaxWeight rule
assumes the RP condition. However, the form of the MaxWeight rule obviously
does not involve the RP condition in any way, and in particular it does not require
a priori knowledge of the workload aggregator ζ . In addition, the definition of
the RP condition shows that almost all vectors λ within the outer (north-east)
boundary V̄ ∗ (with respect to the natural Lebesgue measure on V̄ ∗) do satisfy
the RP condition. (Equivalently, a ray starting from the origin and having a random
direction p distributed uniformly on {‖p‖ = 1} ∩ R

N+ almost surely hits V̄ ∗ at
a point λ satisfying the RP condition.) This explains why the RP condition is
common in applications (although it is not the only situation of interest, of course),
and highlights the importance of relaxing the CRP to the RP condition. (The subset
of points of V̄ ∗, where the CRP condition is not satisfied, typically has nonzero
Lebesgue measure.) Thus, one of the important points of this paper is that, in
many applications, one can use the MaxWeight rule without a priori verifying
the RP condition and/or computing the workload aggregator ζ (or doing any
other “precalculation”), and yet achieve optimality properties, as described in the
previous section.

The following terminology and notation will be useful later. A flow (queue) n

with positive workload contribution ζn > 0 we will call a critical flow (queue);
otherwise (if ζn = 0), the flow (queue) will be called noncritical. By N̄ (C) and
N̄ (NC) = N̄ \ N̄ (C) we will denote the subsets of critical and noncritical flows,
respectively.

This terminology is natural (and consistent with that in [14, 21]). Indeed, a small
increase of the (limiting) input rates λn of noncritical flows will not move the
vector λ out of the rate region boundary, and, moreover, this will neither violate
the RP condition nor change the workload contributions of different flows: this
only moves λ within the interior of the same face of V̄ ∗. Thus, for any noncritical
flow n, the switch has “spare capacity” to serve this flow without sacrificing
service rates of other flows. And, as our main result above shows, the MaxWeight
scheduling rule is able to exploit this circumstance and “automatically identify and
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isolate” the critical subset of flows, so that neither the (limiting) behavior of the
process nor the workload minimization property is affected by a small increase of
noncritical flow rates. For a rule as parsimonious as MaxWeight, which does not
know in advance which flows are critical, such an “automatic critical subsystem
isolation” property is nontrivial.

On the other hand, an increase of the (limiting) input rate of any critical flow
will move vector λ out of the set V̄ . In order for λ to stay within the same face
of V̄ ∗, the input rates of critical flows can only be “traded off” in a way such
that ζ · λ (i.e., the limiting mean workload arrival rate) remains constant.

It is also easy to observe that the RP condition implies the CRP condition for
the reduced “critical subsystem,” obtained from the original one by removing
noncritical flows and excluding noncritical components from the service rate
vectors µm(k).

In the rest of the paper, for a given vector p ∈ R
N (typically it will be a scaled

or unscaled vector of queue lengths q), p(C) and p(NC) will denote projections
of p on the subspaces of critical and noncritical components, respectively.
[In other words, p(C) is obtained from p by replacing pn with 0 for n ∈ N̄ (NC),
and similarly p(NC) is obtained by replacing critical components with 0.]
Trivially, p = p(C) + p(NC).

9.3. Initial condition (16). Condition (16) in Theorem 1 requires that initial
states q̃r (0) converge to an invariant point. (Convergence to zero is included
because the zero vector is an invariant point.) However, Theorem 1 can be
generalized for the case when initial condition (16) does not hold, that is,

q̃r (0) → p 	= x̃◦(0)ν,

where x̃◦(0)
.= ζ · p > 0. Informally, in this case, similarly to the situation

described by Theorem 3 in [4], a “weak limit” process q̃ under MaxWeight may
experience a “jump” at time 0 such that q̃(0) = x̃(0)ν, where the initial workload
(of the limit process) x̃(0) ≥ x̃◦(0). (We put “weak limit” and “jump” in quotation
marks because in this case weak convergence on the interval [0,∞) does not hold,
and needs to be replaced by convergence in the open interval (0,∞); and the proofs
would also be pathwise, using Skorohod representation. So, by q̃(0) and x̃(0)

we actually mean q̃(0+) and x̃(0+), resp.) It can be shown, using our Lemmas
7 and 8, that the ratio x̃(0)/‖p‖ (and ‖q̃(0)‖/‖p‖) is bounded above by a fixed
constant. Moreover, if p is close enough to the invariant manifold in the sense
that the angle between p and ν is small enough, then there is no initial jump of
workload, x̃(0) = x̃◦(0). [But the queue length vector always jumps, i.e., q̃(0) 	= p,
as long as p is not an invariant point.]

After a possible initial jump, the limiting process q̃ behaves the same way
as q̃◦: x̃ is a one-dimensional RBM with drift a and variance σ 2, and q̃ = x̃ν.

This possible workload jump at initial time 0, in the case of “bad” initial state, is
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due to the parsimonious nature of MaxWeight. Since MaxWeight “knows” neither
the mean rate vector λ nor the exact geometry of the rate region V̄ , it takes some
transient period (which becomes infinitely short on the diffusion time scale) for
the queue lengths vector to “adapt,” namely, get close enough to the invariant
manifold. Within this initial transience period (which, again, shrinks to zero in
the diffusion limit), the workload service rate could be wasted. A different rule
which a priori knows rates λ and the geometry of V̄ , could possibly prevent such
wastage and avoid the initial workload jump.

Note, however, that MaxWeight behavior with a “bad” initial state has little
implications for the MaxWeight optimality in practical situations when a < 0.
First, MaxWeight minimizes workload starting at time t∗ when q̃(t) hits 0 for the
first time, and this occurs with probability 1 in the case a < 0. Second, if a < 0,
MaxWeight stochastically minimizes workload in the stationary regime (assuming
Conjecture 1 holds).

10. Intuition behind the main results. In this section we define additional
random functions associated with the system for each value of the scaling
parameter r . This will allow us to provide intuition behind our main results, and
introduce notation used in the proofs.

We denote by

F r
n (t)

.=
�t�∑
l=1

Ar
n(l)

the cumulative number of type n customers arrived by time t (i.e., in the
interval [0, t], excluding customers present at time 0). Let

F̂ r
n (t)

.=
�t�∑
l=1

Dr
n(l)(25)

denote the number of type n customers that were served and have departed by
time t ≥ 0. Also, denote by Gr

m(t) the total number of time slots by (and including)
time t −1, when the server was in state m; and by Ĝr

mk(t) the number of time slots
by (and including) time t − 1 when the server state was m and the scheduling
decision k ∈ K(m) was chosen.

Recall that the probability law of the Markov chain mr(·) describing the switch
state process is the same for each r . Let us introduce the following function of a
switch state:

µ̄m .= max
k∈K(m)

ζ · µm(k), m ∈ M̄,

which is the maximum possible amount of workload that could potentially be
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served in one time slot when the switch is in state m. Then

µ̄
.= ∑

m∈M̄

πmµ̄m = ζ · λ(26)

is the maximum possible average rate at which switch can serve workload.
[The second equality in (26) is established, e.g., as follows. Consider an SSS rule φ

such that, in each switch state m, a fixed decision k ∈ K(m) maximizing ζ ·µm(k)

is chosen. Then, we see that µ̄ = ζ ·v(φ); this v(φ) maximizes ζ ·v over all v ∈ V̄ ,
and so does λ.]

For each t ≥ 0, we denote by

Hr(t)
.=

�t�∑
l=1

µ̄mr(l−1) = ∑
m∈M̄

µ̄mGr
m(t)(27)

the potential amount of workload that could be served by time t , and by

Y r(t)
.= Hr(t) − ζ · F̂ r(t) ≡

�t�∑
l=1

[
µ̄mr(l−1) − ζ · Dr(l)

]
,

the amount of workload service “wasted” by time t . The following process

Wr(t)
.= Xr(0) + ζ · F r(t) − Hr(t), t ≥ 0,

depends only on the initial workload and model primitives and is invariant w.r.t. a
scheduling discipline.

The following relations obviously hold for all t ≥ 0 and any n ∈ N̄ :

F r
n (0) = F̂ r

n (0) = 0,

Qr
n(t) = Qr

n(0) + F r
n (t) − F̂ r

n (t),(28)

Xr(t) = Wr(t) + Y r(t).(29)

Assumptions (11)–(14) imply a FCLT for each input flow:{
r−1(F r

n (r2t) − λr
nr

2t
)
, t ≥ 0

} w→ {σnB(t), t ≥ 0},(30)

where B is a standard (zero drift, unit variance) Brownian motion.
From the FCLT for Markov chains, we have the following FCLT for the

potential workload service process Hr . For any initial states of the (switch state)
Markov chains mr(·), as r → ∞:{

r−1(
Hr(r2t) − µ̄r2t

)
, t ≥ 0

} w→ {σsB(t), t ≥ 0},(31)

where

σ 2
s = lim

n→∞n−1E

[
n∑

t=1

µ̄mr(t−1) − µ̄n

]2

.(32)

(The parameter σs is of course independent of r .)
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For future reference, we define the process Zr , describing system evolution:

Zr = (Qr,Xr,Wr,Y r,F r, F̂ r ,Gr,H r, Ĝr),

where

Qr = (
Qr(t) = (

Qr
1(t), . . . ,Q

r
N(t)

)
, t ≥ 0

)
,

Xr = (
Xr(t), t ≥ 0

)
,

Wr = (
Wr(t), t ≥ 0

)
,

Y r = (
Y r(t), t ≥ 0

)
,

F r = (
F r(t) = (

F r
1 (t), . . . ,F r

N(t)
)
, t ≥ 0

)
,

F̂ r = (
F̂ r(t) = (

F̂ r
1 (t), . . . , F̂ r

N(t)
)
, t ≥ 0

)
,

Gr = ((
Gr

m(t), m ∈ M̄
)
, t ≥ 0

)
,

H r = (
Hr(t), t ≥ 0

)
,

Ĝr = ((
Ĝr

mk(t),m ∈ M̄, k ∈ K(m)
)
, t ≥ 0

)
.

Recall our convention that all component functions, as functions of t , are defined
for t ∈ R+ and are constant within each time slot [t, t + 1), t = 0,1,2, . . . .

Now, let us apply diffusion scaling �̃r to the processes Wr and Y r . Thus, in
addition to q̃r (·) and x̃r (·), we consider similarly defined

w̃r(t)
.= r−1Wr(r2t), t ≥ 0,

and ỹr (·).
From (29) we have

x̃r (t) = w̃r(t) + ỹr (t), t ≥ 0,(33)

and it follows from the definition of Wr , (30), (31) and (10), that w̃r weakly
converges to a Brownian motion w̃ defined in (17):

w̃r w→ w̃.(34)

Relation (33) is of course key for our analysis. The process w̃r is a “driving”
process, depending only on the system primitives, and converging to a Brownian
motion. The process x̃r is nonnegative, and so the nondecreasing process ỹr

appears to be a “regulation” (or “pushing”) process, which keeps x̃r from going
below zero. However, the unusual feature of relation (33) in our case is that, unlike
a “conventional” regulation process, ỹr can increase (i.e., workload service can be
wasted) even when x̃r is arbitrarily large. Thus, the nontrivial part of our analysis
is to show that, as Theorem 1(i) claims, under MaxWeight discipline, ỹr in fact
converges to the conventional regulation process ỹ◦ [defined in (19)] which does
not increase when x̃◦(t) = w̃(t) + ỹ◦(t) > 0.
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11. Fluid sample paths for MaxWeight discipline.

11.1. Definition and basic properties. In this section we study sequences
of processes Zr under fluid scaling and under MaxWeight discipline. In fact,
the definition of a fluid sample path below only involves sample paths of the
processes Zr under fluid scaling, and their limits. Within this section, we consider
sequences {Zr, r ∈ Rf }, where Rf can be an arbitrary (possibly completely
unrelated to R) nondecreasing sequence of positive numbers tending to infinity.

Recall our convention that all component functions of Zr , as functions of t , are
defined for t ∈ R+ and are constant within each time slot [t, t + 1), t = 0,1,2, . . . .
Since we are going to consider the process Zr restarted at different, not nec-
essarily integer, times, from this point on it will be convenient to generalize
the definition of Zr . We will allow Zr to be either a process defined in Sec-
tion 10 or its version restarted at an arbitrary fixed time d ≥ 0, namely, a process
	(d)Zr .= (θdQr, θdXr, θdWr − Wr(d) + Xr(d), θdY r − Y r(d), θdF

r − F r(d),

θdF̂ r − F̂ r(d), θdGr − Gr(d), θdHr − Hr(d), θdĜr − Ĝr(d)). (Such a general-
ization is nothing more than a convention that, in the definition of Zr , the very first
time slot can be shorter than 1.)

For each r , consider the scaled process

�rZr .= zr = (qr, xr ,wr, yr, f r, f̂ r , gr, hr , ĝr ).

Thus, the component functions of zr are piecewise constant, but a “time slot”
has the length 1/r , except for the first slot which may be shorter than 1/r .
The “special” shift operator 	(d)zr (for d ≥ 0) acts on zr analogously to the way
it acts on Zr .

From (28) we get

qr
n(t) ≡ qr

n(0) + f r
n (t) − f̂ r

n (t), t ≥ 0, n ∈ N̄ .(35)

DEFINITION. A fixed set of functions z = (q, x,w,y,f, f̂ , g,h, ĝ) we will
call a fluid sample path (FSP) if there exists a sequence Rf of values of r ,
and a sequence of sample paths (of the corresponding processes) {zr} such that,
as r → ∞ along sequence Rf ,

zr → z u.o.c.,(36)

and in addition

‖q(0)‖ < ∞,(37)

(
f r

n (t), t ≥ 0
) → (λnt, t ≥ 0) u.o.c., ∀n ∈ N̄,(38) (

gr
m(t), t ≥ 0

) → (πmt, t ≥ 0) u.o.c., ∀m ∈ M̄.(39)
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We emphasize that a sequence Rf whose existence is required in the above
definition may be completely unrelated to the sequence R we introduced earlier
in the definition of the heavy traffic regime. For an FSP z, any sequence of scaled
paths {zr, r ∈ Rf } which satisfies the conditions of the above definition will be
called a sequence defining z.

REMARK. The definition of an FSP does not require any assumptions on the
vector of mean rates λ besides λ ∈ R

N+ . (To be precise, this is true if we exclude
components xr , wr , yr , hr from zr , and corresponding components x, w, y,
h from z. Or, alternatively, we can assume that workload aggregator ζ ∈ R

N+
is just some fixed vector, possibly unrelated to λ.) Many of the FSP properties
established in this paper (as can be seen from their proofs) hold for any λ ∈ R

N+ ,
not necessarily satisfying RP condition. In particular, this applies to properties in
Lemma 1 [excluding (43)–(45)] and Lemmas 2, 3 and 5.

The following lemma establishes some basic properties of fluid sample paths,
easily implied by their definition.

LEMMA 1. For any fluid sample path z, all its component functions are
Lipschitz continuous and, in addition,

f (t) = λt, t ≥ 0,(40)

gm(t) = πmt, t ≥ 0, m ∈ M̄,(41)

q(t) = q(0) + f (t) − f̂ (t), t ≥ 0,(42)

h(t) = ∑
m∈M̄

µ̄mgm(t) = µ̄t = ζ · λt, t ≥ 0,(43)

w(t) = x(0) + ζ · f (t) − h(t) = x(0) = w(0), t ≥ 0,(44)

x(t) = ζ · q(t) = w(t) + y(t) = x(0) + y(t), t ≥ 0,(45)

f̂ (t2) − f̂ (t1)
(46)

≤ ∑
m∈M̄

∑
k∈K(m)

[ĝmk(t2) − ĝmk(t1)]µm(k), t2 ≥ t1 ≥ 0,

∑
k∈K(m)

[ĝmk(t2) − ĝmk(t1)] = gm(t2) − gm(t1), t2 ≥ t1 ≥ 0, m ∈ M̄.(47)

PROOF. Properties (40) and (41) follow directly from the definition of an
FSP, which of course means that each function fn and gm is Lipschitz. Lipschitz
continuity of limiting functions f̂n and ĝmk follows from the fact that the
increments of the corresponding prelimit (unscaled) functions F̂ r

n and Ĝr
mk within
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one time slot are uniformly bounded due to our model assumptions. [See (25) and
the paragraph following (25) for the definitions of F̂ r

n and Ĝr
mk .] The Lipschitz

continuity of all components of FSP z easily follows. Due to (35), property (42)
also follows from the FSP definition. In (43), the first equality follows from the
definitions of Hr [in (27)] and FSP, and the second and third ones from (41)
and (26). The definitions of Wr and FSP imply the first equality in (44), which
in turn implies the remaining equalities in (44) in view of (40) and (43). The
first two equalities in (45) follow from the definition of Xr and (29) (along with
FSP definition), and the last one follows from (44). Inequality (46) is implied by
the inequality

f̂ r (t2) − f̂ r (t1) ≤ ∑
m∈M̄

∑
k∈K(m)

[ĝr
mk(t2) − ĝr

mk(t1)]µm(k), t2 ≥ t1 ≥ 0,

which is a trivial consequence of the fact that if the switch state in a time slot
is m and a scheduling decision k ∈ K(m) is chosen, then the number of type n

customers served in this slot cannot exceed µm
n (k). Similarly, (47) follows from∑

k∈K(m)

[ĝr
mk(t2) − ĝr

mk(t1)] = gr
m(t2) − gr

m(t1), t2 ≥ t1 ≥ 0, m ∈ M̄,

which in turn is a consequence of the fact that when the switch is in state m, at
least one of the decisions k ∈ K(m) is chosen. �

Lemma 2 is closely related to Lemma 1 and is also a simple corollary of the
FSP definition. The lemma will be used in the proofs of our main (heavy traffic
limit) results.

LEMMA 2. Suppose a sequence of sample paths {zr}, with r → ∞ along
some sequence Rf 1, is such that the conditions (38) and (39) hold and, for some
nonnegative constants c1 ≤ c2, ‖qr(0)‖ ∈ [c1, c2] for all r . Then, there exists
a subsequence Rf ⊆ Rf 1 along which zr converges (u.o.c.) to an FSP z with
‖q(0)‖ ∈ [c1, c2].

PROOF. We have (f r, gr) → (f, g) u.o.c. by assumption, which also implies
that hr → h u.o.c., with f,g,h defined by (40), (41) and (43). We can always
choose a subsequence Rf 2 ⊆ Rf 1 along which we have (f̂ r , ĝr ) ⇒ (f̂ , ĝ) (since
the functions in the left-hand side are nondecreasing). The limit functions f̂ , ĝ

must be Lipschitz continuous (because the increments of prelimit functions
F̂ r

n and Ĝr
mk within one time slot are uniformly bounded). This implies that, in fact,

(f̂ r , ĝr ) → (f̂ , ĝ) u.o.c. It remains to choose a further subsequence Rf ⊆ Rf 2
along which qr(0) → q(0) with ‖q(0)‖ ∈ [c1, c2]. Along this subsequence we
must have (qr , xr,wr, yr) → (q, x,w,y) u.o.c., with q , x, w, y defined by the
other components and relations (42), (44) and (45). Thus, zr converges (u.o.c.) to
z = (q, x,w,y,f, f̂ , g,h, ĝ), which is an FSP. �
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The scaling and shift properties, described in the following Lemma 3, and their
proof are analogous to those of Lemmas 6.1 and 6.2 in [28]. Since FSPs are defined
as limits, they basically just inherit these properties from the pre-limit paths.

LEMMA 3. For any fluid sample path z, the following properties hold.

(i) Scaling (“Similarity”). For any c > 0, �cz is also a fluid sample path.
(ii) Shift. For any d ≥ 0, 	(d)z is also a fluid sample path.

PROOF. Consider a fixed FSP z and a sequence of scaled paths {zr, r ∈ Rf }
which defines it. Let {Zr, r ∈ Rf } be the corresponding sequence of unscaled
paths, that is, zr = �rZr for all r . For any fixed c > 0, we have �czr = �crZr

for all r . Therefore, {�czr} is a valid sequence of scaled paths, obtained from
paths Zr (which can be relabeled as Zcr ) by operators �cr . We can now verify
directly that the sequence {�czr} defines FSP �cz, which proves (i). Similarly, for
any d ≥ 0, {	(d)zr} is a valid sequence of scaled paths, which defines FSP 	(d)z.
This proves (ii). �

11.2. Uniform attraction of fluid sample paths. In this section we prove that
the family of fluid sample paths is such that, as t → ∞, q(t) converges uniformly
[up to scaling by the initial state norm ‖q(0)‖] to an invariant point. Recall that
an invariant point is any vector q∗ ∈ R

N+ such that q∗ = cν for some c ≥ 0
(or, equivalently, such that γ × [q∗]β = cζ for some c ≥ 0). Note that an invariant
point q∗ is the unique point where function

�(q)
.= 1

β + 1

∑
n

γnq
β+1
n ,(48)

restricted to the hyperplane ζ · q = ζ · q∗ [i.e., the hyperplane L(ζ, q∗)], attains its
minimum. Recall that the set of all invariant points (a ray in our case) is called the
invariant manifold.

The underlying intuition for the FSP attraction property is that, as we will see
shortly in Lemmas 5 and 6, there are two “Lyapunov functions” �(q(t)) and
x(t) = ζ · q(t), the former nonincreasing and the latter nondecreasing, which
“sandwich” the values of q(t).

For vectors q ∈ R
N+ , consider the following (Lyapunov) function:

G(q)
.= �(q)

�(q∗)
− 1,(49)

where q∗ = (ζ · q)ν is the unique invariant point lying in the hyperplane L(ζ, q),
and we use the following conventions: if q 	= 0 and q∗ = 0 [meaning �(q∗) = 0],
we put G(q) = ∞; if q = 0, we put G(q) = 0.

It follows from the definition of an invariant point that G(q) ≥ 0 and, moreover,
G(q) > 0 unless q is an invariant point. We also note that G(q) is invariant with
respect to scaling of q; that is, G(q) = G(cq) for any c > 0.
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For vectors q ∈ R
N+ , let us also introduce the function α(q) which is the angle

between vectors γ × qβ and vector ζ , namely,

α(q) = arccos
(γ × qβ) · ζ
‖γ × qβ‖‖ζ‖

if q 	= 0, and α(q) = 0 by convention if q = 0. Trivially, α(q) is also invariant with
respect to scaling of q .

It follows directly from the above definitions that all three following conditions
are equivalent: G(q) = 0, q = q∗ and α(q) = 0. Moreover, using the fact that �(q)

is a continuous strictly convex function, it is easy to observe that, for nonzero
vectors q , all three following convergence properties are equivalent: G(q) → 0,
‖q − q∗‖/‖q∗‖ → 0, α(q) → 0. This in particular implies that

sup{G(q)|q 	= 0, α(q) ≤ �} ↓ 0 as � ↓ 0,(50)

sup{α(q)|q 	= 0,G(q) ≤ �} ↓ 0 as � ↓ 0(51)

and

sup
{‖q − (ζ · q)ν‖

‖(ζ · q)ν‖
∣∣∣q 	= 0,G(q) ≤ �

}
↓ 0 as � ↓ 0.(52)

For a fixed switch state m and a nonzero vector p ∈ R
N+ , let us define K∗(m,p)

.=
arg maxk∈K(m) p · µm(k). Since K(m) is a finite set for every m and function
p · µm(k) is continuous on p ∈ R

N+ , we obtain the following simple fact.

LEMMA 4. Suppose a nonzero vector p ∈ R
N+ is fixed. Then there exists small

� > 0 (depending on p) such that, for all nonzero vectors q forming an angle
smaller than � with p, we have

K∗(m,q) ⊆ K∗(m,p) ∀m ∈ M̄.

We now introduce some definitions and conventions regarding derivatives
of FSP components. Since all component functions of an FSP are Lipschitz, they
are absolutely continuous, and therefore almost all points t ∈ R+ (with respect to
Lebesgue measure) are such that all component functions of z have derivatives;
we will call such points regular. For any regular point t ≥ 0, we have

d

dt
q(t) = λ − v̂(t),(53)

where

v̂(t)
.= f̂ ′(t) ≤ v(t)

.= ∑
m∈M̄

∑
k∈K(m)

ĝ′
mk(t)µ

m(k)(54)
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with the inequality following from (46). Necessarily, v(t) ∈ V̄ [and therefore
v̂(t) ∈ V̄ ]. Indeed, by (47) and (41), for any m, we have

∑
k∈K(m) ĝ

′
mk(t) = πm,

and thus

v(t) = ∑
m∈M̄

πm

∑
k∈K(m)

(
ĝ′

mk(t)/πm

)
µm(k) ∈ V̄ .

In the rest of the paper we use the following convention: when we write
an expression containing derivatives of FSP components (or derivatives of
functions of FSP components) at time t ≥ 0, we always mean that it holds
under the additional condition that t is regular, even if we do not state this
condition explicitly.

The following Lemma 5 describes key properties of FSPs leading eventually to
the uniform attraction property. In particular, (57) is the key differential inclusion
an FSP (for MaxWeight rule) must satisfy. Property (58) [which is a corollary
of (57)] shows that the derivative of the (Lyapunov) function �(q(t)) is minimized
at all times. This property of the FSPs is a manifestation of the underlying
“principle” behind the MaxWeight rule pointed out in the Introduction.

LEMMA 5. For any FSP, the following hold. [Recall the definitions of v(t) and
v̂(t) in (54).]

(i) For any n ∈ N̄ ,

qn(t) > 0 implies v̂n(t) = vn(t), t ≥ 0.(55)

(ii) We have

v(t) ∈ arg max
v∈V̄

(
γ × q(t)β

) · v, t ≥ 0.(56)

(iii) We have

d

dt
q(t) = λ − v̂(t), v̂(t) ∈ arg max

v∈V̄

(
γ × q(t)β

) · v, t ≥ 0,(57)

[�(q(t))]′ = (
γ × q(t)β

) · (
λ − v̂(t)

)
(58)

= min
v∈V̄

(
γ × q(t)β

) · (λ − v), t ≥ 0,

REMARK. As we mentioned earlier in the remark following the FSP de-
finition, Lemma 5 holds for any λ ∈ R

N+ , not only λ satisfying the RP con-
dition. If λ is within the stability region V 0, then (by the definition of V 0)
λ < v for some fixed v ∈ V̄ , and therefore [by (58)] for any FSP the derivative
[�(q(t))]′ ≤ (γ × q(t)β) · (λ − v) is strictly negative and separated from zero
as long as ‖q(t)‖ is separated from zero. Thus, λ ∈ V 0 implies that, uniformly
on q(0) with ‖q(0)‖ = 1, for any ε > 0, the norm ‖q(t)‖ must reach level ε at
or before some fixed finite time, depending only on ε. This property of FSPs im-
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plies (using the fluid limit technique) stability of our system with the vector of
mean rates λ ∈ V 0, and this is exactly how the MaxWeight stability is proved
in [1]. (Establishing the MaxWeight stability in the case of more general weights,
as in (4), requires an additional step, which can also be found in [1].)

PROOF OF LEMMA 5. Throughout this proof we consider a fixed FSP z,
a sequence of scaled paths {zr, r ∈ Rf }, which defines it, and the corresponding
sequence of unscaled paths {Zr, r ∈ Rf }, that is, zr = �rZr for all r .

(i) Suppose qn(t) > 0. We know that qn(·) is continuous. Then the following
observation is true:

There exist small fixed �1 > 0 and �2 > 0 [both depending on qn(t)] such that,
for all sufficiently large r , the unscaled paths Zr are such that Qr

n(ξ) > r�2 for
all ξ ∈ [rt, rt + r�1].

This means that, for any ξ ∈ [t, t + �1] and all large r ,

f̂ r
n (ξ) − f̂ r

n (t) = ∑
m∈M̄

∑
k∈K(m)

[ĝr
mk(ξ) − ĝr

mk(t)]µm
n (k),(59)

where (we remind) f̂n = �rF̂n, ĝmk = �rĜmk , with F̂n and Ĝmk defined in (25)
and the paragraph following (25). Taking the r → ∞ limit in (59), we obtain
analogous equality for the corresponding FSP components, which by taking
derivative on ξ at t implies v̂n(t) = vn(t).

(ii) Suppose q(t) 	= 0. Consider the sets K∗(m,γ × q(t)β) for each m. From
Lemma 4, the fact that q(·) is continuous, and the form of the MaxWeight rule, we
easily obtain the following property:

There exists a small fixed �3 > 0 such that, for all sufficiently large r , the
unscaled paths Zr are such that in the time interval [rt, rt + r�3] for any switch
state m, only the decisions from the subset K∗(m,γ × q(t)β) can be chosen.

By the definition of K∗(m,γ × q(t)β), the value of (γ × q(t)β) ·µm(k) is same
for all k ∈ K∗(m,γ × q(t)β). Therefore, for any ξ ∈ [t, t + �3], we have

[γ × q(t)β ] · ∑
m∈M̄

∑
k∈K(m)

(
ĝr

mk(ξ) − ĝr
mk(t)

)
µm(k)

= ∑
m∈M̄

∑
k∈K(m)

(
ĝr

mk(ξ) − ĝr
mk(t)

){
max

i∈K(m)
[γ × q(t)β ] · µm(i)

}
.

Taking the r → ∞ limit in the last equality and using (47) and (39), we obtain

[γ × q(t)β ] · ∑
m∈M̄

∑
k∈K(m)

(
ĝmk(ξ) − ĝmk(t)

)
µm(k)

= ∑
m∈M̄

πm(ξ − t)

{
max

i∈K(m)
[γ × q(t)β ] · µm(i)

}

= (ξ − t)

{
max
v∈V̄

[γ × q(t)β ] · v
}
.
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Finally, taking the derivative on ξ at t , we see that

[γ × q(t)β ] · v(t) = max
v∈V̄

[γ × q(t)β ] · v,

which proves (56) [for q(t) 	= 0]. If q(t) = 0, then (56) holds trivially, because
the arg max in the right-hand side is equal to the entire set V̄ , and v(t) always
belongs to V̄ . The proof of (56) is complete.

(iii) The property (57) follows from (53), (56) and (55). The left-hand side
equality in (58) is obtained by differentiating �(q(t)) on t and applying the
equality in (57). The right-hand side equality in (58) follows from the inclusion
in (57). �

The following lemma is basically just a corollary of Lemma 5.

LEMMA 6. For any FSP, the following hold:

(i) We have x′(t) ≥ 0 and [�(q(t))]′ ≤ 0 for all t ≥ 0. Therefore, x(t) is
nondecreasing, �(q(t)) is nonincreasing, and q(0) = 0 implies q(t) ≡ 0 for
all t ≥ 0.

(ii) There exists ε > 0 (depending only on the model parameters) such that

[�(q(t))]′ ≤ −ερ(t),

where

ρ(t)
.= ‖γ × q(t)β‖ sinα(q(t))

is the distance from point γ × q(t)β to the invariant manifold.
(iii) For any ε1 > 0, there exists T1 = T1(ε1) depending on ε1 such that, for any

FSP with q(0) 	= 0, min{t ≥ 0 | ρ(t) ≤ ε1‖q(0)‖} ≤ ‖q(0)‖T1.

PROOF. (i) We have x′(t) = ζ · (λ − v̂(t)) ≥ 0, because λ maximizes ζ · v

over V̄ and v̂(t) ∈ V̄ . Inequality [�(q(t))]′ ≤ 0 follows from (58) and the fact
that λ ∈ V̄ .

(ii) For an ε > 0, consider the subset U(ε) consisting of all vectors λ + ξ such
that ζ · ξ = 0 and ‖ξ‖ = ε > 0. Let us fix ε > 0 small enough so that U(ε) ⊂ V̄ (ζ ).
[Recall that V̄ (ζ ) is the face of the boundary of V̄ , orthogonal to ζ and containing λ

in its interior.] It follows from (58) that

[�(q(t))]′ ≤ min
v∈U(ε)

(
γ × q(t)β

) · (λ − v) = −ε‖γ × q(t)β‖ sinα(q(t)).

(iii) Due to the scaling property of FSPs, without loss of generality we can
assume ‖q(0)‖ = 1. We know that �(q(t)) ≥ 0 and �(q(t)) ≤ �(q(0)) ≤ ∑

n γn

for all t ≥ 0. But, by (ii), [�(q(t))]′ ≤ −εε1 < 0 as long as ρ(t) > ε1. Therefore,
if ρ(0) > ε1, ρ(t) must hit the value ε1 by the time T1 = ∑

n γn/(εε1). �
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We note for future reference that, for any vector q ∈ R
N+ with workload

x = ζ · q > 0 [or, equivalently, with q(C) 	= 0], we have

‖q(C)‖
x

< κ,
x

‖q(C)‖ < κ,
x

‖q‖ < κ,
x

maxn qn

< κ,(60)

where κ > 1 is a universal constant, depending only on the number of flows N

and workload aggregator ζ . In addition, for any two nonzero vectors p and q such
that �(p) = �(q), the ratio ‖p‖/‖q‖ is bounded above by a universal constant
(depending only on N , β , γ ); without loss of generality assume this bound to be
strictly less than κ :

max
{‖p‖/‖q‖ | q ∈ R

N+, q 	= 0,�(p) = �(q)
}
< κ.(61)

The following result describes the uniform attraction property of the FSPs, along
with other properties used later in the paper.

THEOREM 2. For any FSP, the following hold.

(i) As functions of t ≥ 0, �(q(t)) is continuous nonincreasing, x(t) = ζ · q(t)

is continuous nondecreasing, and G(q(t)) is nonincreasing and it is continuous in
every point t where it is finite [i.e., where x(t) > 0].

(ii) If q(0) = 0, then q(t) ≡ 0 for all t ≥ 0. If q(0) 	= 0, then supt≥0 ‖q(t)‖ <

κ‖q(0)‖ and supt≥0 x(t) < κ2‖q(0)‖.
(iii) Uniformly on FSPs with ‖q(0)‖ = 1,

G(q(t)) ↓ 0 as t → ∞.

PROOF. (i) This follows from Lemma 1, Lemma 6(i), and the definition
of G(q(t)).

(ii) These properties follow from the fact that �(q(t)) can only decrease and
“universal” bounds (61) and (60).

(iii) Let ‖q(0)‖ = 1. Let us fix arbitrary small δ1 > 0. We will prove that
the time for α(q(t)) to reach δ1 > 0 is uniformly bounded by some fixed
constant depending only on δ1. This will imply the desired uniform convergence
G(q(t)) ↓ 0 because G(q(t)) is nonincreasing and [by (50)], for any δ2 > 0, we
can always choose δ1 > 0 small enough so that α(q(t)) ≤ δ1 implies G(q(t)) ≤ δ2.

Given δ1 > 0 fixed above, let us choose a sufficiently small ε1 > 0 such that, for
any vector p ∈ R

N+ ,

‖γ × pβ‖ ≤ ε1/ sin δ1 implies ‖p‖ ≤ 1/2.(62)

(The meaning of this choice will become clear later in the proof.) For this ε1
we choose the corresponding T1 as in Lemma 6(iii).

Consider the (possibly finite) sequence τ0 ≤ τ1 ≤ τ2 ≤ · · · constructed as
follows. Let τ0 = 0. Let τ1 be the smallest time t ≥ τ0 such that either

α(q(t)) ≤ δ1(63)
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or ‖q(t)‖ ≤ ‖q(τ0)‖/2. If (63) holds for t = τ1, the sequence stops. If not,
we define τ2 as the smallest time after τ1 such that either (63) holds or
‖q(t)‖ ≤ ‖q(τ1)‖/2. In the former case we stop, and in the latter case we define τ3
analogously, and so on. We claim that, for any i ≥ 1 (for which τi is well defined),
we have

τi − τi−1 ≤ ‖q(τi−1)‖T1.(64)

Due to scaling property of the FSPs, it suffices to prove (64) for i = 1, that is,
to show that τ1 ≤ T1. Indeed, by Lemma 6(iii), at some time t1 ≤ T1 we have
ρ(t1) = ‖γ × q(t1)

β‖ sinα(q(t1)) ≤ ε1, which means that either α(q(t1)) ≤ δ1 or
[by (62)] ‖q(t1)‖ ≤ 1/2 = ‖q(0)‖/2. This means τ1 ≤ t1, which proves claim (64).

Whether the sequence {τi} is finite or not, we have

τ
.= sup

i

τi ≤ ‖q(0)‖T1/(1 − 1/2) = 2T1.

If sequence {τi} is finite, then α(q(τ )) ≤ δ1 by construction. If sequence {τi}
is infinite, then [by continuity of q(t)] q(τ ) = limi q(τi) = 0, which means
α(q(τ )) = 0. Thus, the time for α(q(t)) to reach δ1 is uniformly bounded by 2T1.
The proof is complete. �

REMARK. Suppose λ ∈ V̄ ∗ and λ ∈ R
N++, but the RP condition for λ does

not necessarily hold. Our analysis of the FSPs (under MaxWeight) can be easily
generalized to show that, in this case, the FSP uniform attraction property still
holds, with the invariant manifold defined more generally as follows. Let ζ̄ be
the convex cone of outward-pointing normal vectors to V̄ at point λ. (This
cone is simply a ray, if RP condition holds.) Then, the set of invariant points
(or the invariant manifold) is defined as the set of vectors p ∈ R

N+ such that
γ × pβ ∈ ζ̄ . This invariant manifold is also a cone, although not necessarily
convex. As mentioned earlier, the differential inclusion (57) and property (58)
hold for any λ ∈ R

N+ . Moreover, when λ ∈ V̄ ∗ and λ ∈ R
N++, Lemma 6(ii) and (iii)

holds as well, if α(q(t)) is understood more generally as the angle between γ ×qβ

and the cone ζ̄ . The fact that the “workload is nondecreasing” also holds if it is
understood as the property that ζ ·q(t) is nondecreasing in t for each ζ ∈ ζ̄ . We do
not provide details on the convergence proof modification, which we believe can be
easily “recovered” by an interested reader. It should be emphasized that—if the RP
condition fails—the uniform attraction of the FSPs to the invariant manifold in
itself does not imply any heavy traffic (diffusion limit) optimality properties, such
as those described in our main Theorem 1.

12. Proof of Theorem 1. As we mentioned in the Introduction, our proof of
the heavy traffic SSC property, which relies on the attraction property of FSPs,
follows the general approach developed in [4] and [35].



MAXWEIGHT SCHEDULING 33

For each r ∈ R, consider the following process, obtained by a diffusion scaling:

�̃r(Qr,Xr,Wr,Y r ,F r,Gr,H r)
.= (q̃r , x̃r , w̃r , ỹr , f̃ r , g̃r , h̃r ).

To prove properties (20)–(22), it will suffice to show that, for any fixed sub-
sequence R1 ⊆ R, there exists another subsequence R2 ⊆ R1 such that these
properties hold when r → ∞ along R2. To do that, it in turn suffices to show
that we can (using Skorohod representation) construct all processes (for all
r ∈ R) on the same probability space and choose subsequence R2 in a way such
that the desired properties hold with probability 1 (or are implied by certain
probability 1 properties) as r → ∞ along R2. In this section we do just that
to prove (20) and (21) [which is Theorem 1(i)]. The proof of (22) [which is
Theorem 1(ii)] will be even simpler—the common probability space will be such
that the desired probability 1 property holds along the sequence R itself.

We construct the underlying probability space as follows. According to the
Skorohod representation theorem (see, e.g., [10]), for each n, the sequence of the
input processes {F r

n } and a standard Brownian motion Bn can be constructed on
a probability space such that, as r → ∞ along R, the convergence in (30) holds
u.o.c. with probability 1 (w.p.1):(

f̃ r
n (t) − λr

nrt, t ≥ 0
) u.o.c.→ {σnBn(t), t ≥ 0}.(65)

Similarly, the sequence of processes {(H r,Gr)} [with distributions defined by
Markov chains mr(·)] and a standard Brownian motion Bs can be constructed on
a probability space such that the convergence in (31) holds u.o.c. w.p.1, which can
be written as (

h̃r (t) − µ̄rt, t ≥ 0
) u.o.c.→ (

σ 2
s Bs(t), t ≥ 0

)
.(66)

This is done in two steps. First, given distributions of the processes Hr and
the weak convergence (31), we use the Skorohod representation to construct the
sequence of Hr on a probability space such that (66) holds. Then, using
the existence of a regular conditional distribution of Gr on Hr (see, e.g.,
Theorem 8.1 in the Appendix of [10]), we can augment the probability space so
that processes Gr are defined on this space as well, and the pair (H r,Gr) for
each r has the correct joint distribution.

We can and do assume that the underlying probability space (�,F ,P ) is the
direct product of the N + 1 probability spaces specified above, and (without loss
of generality) assume that this probability space is complete. By ω we will denote
elements of �.

Then we have (33):

x̃r (t) = w̃r(t) + ỹr (t), t ≥ 0,(67)

and the probability 1 convergence version of (34):(
w̃r (t), t ≥ 0

) u.o.c.→ (
w̃(t), t ≥ 0

)
,(68)
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where

w̃r (t) = x̃r (0) + ζ · f̃ r (t) − h̃r(t)

and

w̃(t)
.= x̃◦(0) + at + σB(t), t ≥ 0,

is a Brownian motion, defined as in (17). By the definition of a Brownian motion,
the sample paths of w̃ are continuous.

Using Large Deviations estimates for Markov chains and the Borel–Cantelli
lemma, it is easy to show (as, e.g., in [27]) that, as r → ∞ along R, the following
properties hold with probability 1, for any fixed T3 > 0:

max
0≤l≤T3r3/2

∣∣∣∣√rgr
m

(
l + 1√

r

)
− √

rgr
m

(
l√
r

)
− πm

∣∣∣∣ → 0, m ∈ M̄,(69)

max
0≤l≤T3r3/2

∣∣∣∣√r hr

(
l + 1√

r

)
− √

rhr

(
l√
r

)
− µ̄

∣∣∣∣ → 0,(70)

where (70) follows from (69).
To simplify notation, without loss of generality we assume that properties

(65)–(70) hold for all ω ∈ � (not just for almost all ω).
Now suppose an arbitrary subsequence R1 ⊆ R is fixed.
Since our arrival processes are i.i.d., we can use Bramson’s weak law estimate

([4], Proposition 4.2) to choose a subsequence R2 ⊆ R1 such that the following
property holds. (We relegate its derivation to the Appendix.) With probability 1,
as r → ∞ along R2, for any T3 > 0 and any n ∈ N̄ , we have

max
0≤l≤T3r

sup
0≤ξ≤1

|f r
n (l + ξ) − f r

n (l) − λnξ | → 0.(71)

For the rest of this section, we define �2 ⊆ � as the (measurable, probability 1)
subset of ω ∈ � such that property (71) holds [in addition to (65)–(70)] along
the subsequence R2.

For any r ∈ R, ỹr is a nondecreasing RCLL function. Therefore, for any
fixed ω ∈ �, from any subsequence R3(ω) ⊆ R (which may depend on ω!) we can
choose a further subsequence R4(ω) ⊆ R3(ω) along which

ỹr ⇒ ỹ,(72)

where ỹ is some nonnegative nondecreasing function in D([0,∞), R̄). [This
means that ỹ(t) may take infinite values +∞. Also, recall that “⇒” means
convergence in every point of continuity of the limit function except maybe
point 0.] It is possible that ỹ(0) > 0.

We note that (72) implies that

x̃r ⇒ x̃
.= w̃ + ỹ,

and therefore x̃(t) < ∞ if and only if ỹ(t) < ∞.
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The key part of the proof of Theorem 1(i) is proving that if ω ∈ �2, R3(ω) ⊆ R2
[implying R4(ω) ⊆ R2] and the scheduling discipline is MaxWeight, then ỹ = ỹ◦,
where ỹ◦ is the regulation function defined in (19). The proof of Theorem 1(ii)
is much simpler: we will show that, for any ω ∈ �, R3(ω) ⊆ R and arbitrary
scheduling discipline, ỹ(t) ≥ ỹ◦(t) for all t ≥ 0.

To divide the proof of Theorem 1(i) into manageable parts, two auxiliary
Lemmas 7 and 8, pertaining to MaxWeight discipline, are formulated below.
Lemma 7 contains the key fact that if workload x̃r (t) at some time t stays bounded
above and separated from zero as r → ∞, and the ratio ‖q̃r (t)‖/x̃r (t) stays
bounded (which is automatically true if the CRP holds, but not necessarily true
under the RP condition), then the limiting path ỹ(·) cannot increase in a small
interval to the right of t . This fact will be the main tool used in the proof of
Theorem 1(i). The proof of Lemma 7 is presented in Section 12.1. Lemma 8 shows
that in fact ‖q̃r,(NC)(·)‖ is uniformly small (on compact sets) for large r , which
allows us to apply Lemma 7, because we always have ‖q̃r,(C)(t)‖/x̃r (t) < κ for
nonzero x̃r (t). The proof of Lemma 8 uses an argument similar to that in the proof
of Lemma 7. Also, the proof of Theorem 1 in the case when the CRP condition
holds does not require Lemma 8, so the reader may choose to skip Lemma 8 and
its proof at first reading. For these reasons we relegate the proof of Lemma 8 to
the Appendix.

LEMMA 7. (i) Suppose the scheduling discipline is MaxWeight. Suppose
ω ∈ �2 and a subsequence R4(ω) ⊆ R2 are fixed such that, along this subse-
quence, (72) holds. Suppose a sequence {t̃ r , r ∈ R4(ω)} is fixed such that

t̃ r → t ′ ≥ 0,(73)

x̃r (t̃ r ) → C > 0(74)

and

lim sup
r→∞

‖q̃r (t̃ r )‖ < κ1C,(75)

where κ1 > 1 is a fixed constant. Let δ > 0 be such that

ε = Osc(w̃; [t ′ − 3δ, t ′ + 3δ] ∩ R+) < C/2.

Then,

(a) ỹ (and x̃) is finite in [0, t ′ + δ];
(b) ỹ does not increase in (t ′, t ′ + δ]; that is, ỹ(t ′ + δ) − ỹ(t ′) = 0;
(c) the following bounds hold, with C1

.= κ2κ1C + 2ε:

C − 2ε ≤ x̃(t) ≤ C1 ∀ t ∈ [t ′, t ′ + δ],(76)

x̃r (t) < C1 and ‖q̃r (t)‖ < 2κC1 ∀ t ∈ [t̃ r , t̃ r + δ](77)

for all large r ∈ R4(ω);
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(d) for any δ′ > 0, (q̃r (t) − x̃r (t)ν, t ∈ [t ′ + δ′, t ′ + δ]) u.o.c.→ 0.

(ii) Suppose conditions of (i) hold and, in addition, t̃ r = t ′ for all r and
q̃r (t ′) → Cν. Then,

(c′) x̃(t ′) = C [= lim x̃r (t ′)];
(d′) (q̃r (t) − x̃r (t)ν, t ∈ [t ′, t ′ + δ]) u.o.c.→ 0.

REMARK. If the CRP condition holds, then condition (74) “automatically”
implies (75), with any fixed κ1 > κ .

LEMMA 8. (i) Suppose the scheduling discipline is MaxWeight. Suppose
ω ∈ �2 and a subsequence R4(ω) ⊆ R2 are fixed such that, along this subse-
quence, (72) holds. Suppose a sequence {t̃ r , r ∈ R4(ω)} is fixed such that

t̃ r → t ′ ≥ 0

and

‖q̃r (t̃ r )‖ → C2 ≥ 0.

Let C and δ > 0 be fixed such that C > κ2C2 and

ε = Osc(w̃; [t ′ − 9δ, t ′ + 9δ] ∩ R+) < C/2.(78)

Then,

(a) the following bounds hold:

x̃(t) ≤ C1 ∀ t ∈ [t ′, t ′ + δ]
and

x̃r (t) < C1 and ‖q̃r (t)‖ < 2κC1 ∀ t ∈ [t̃ r , t̃ r + δ]
for all large r ∈ R4(ω),

with C1 = κ2κ1C + 2ε, κ1 = 2κ ;
(b) for any δ′ > 0, (q̃r,(NC)(t), t ∈ [t ′ + δ′, t ′ + δ]) u.o.c.→ 0.

(ii) Suppose the conditions of (i) hold and, in addition, t̃ r = t ′ for all r ,
and q̃r (t ′) converges to an invariant point, that is, q̃r (t ′) → (C2/‖ν‖)ν. Then
we have

(b′) (q̃r,(NC)(t), t ∈ [t ′, t ′ + δ]) u.o.c.→ 0.

The proof is presented in the Appendix.

REMARK. Since for any δ > 0 there exists a sufficiently large C satisfy-
ing (78), we see that Lemma 8(ii) holds for any δ > 0.
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12.1. Proof of Lemma 7. To establish the asymptotic properties claimed by
Lemma 7 for the diffusion-scaled paths in the interval [t̃ r , t̃ r + δ], δ > 0, in this
section we will first study the fluid-scaled paths zr in the corresponding interval
[r t̃r , r t̃ r + rδ]. More precisely, we consider the following family of fluid-scaled
paths restarted at times which are a constant T > 0 apart from each other. For
each r and for each integer l ∈ [0,2δr/T − 1], consider the path

z̄r,l .= 	(rt̃r + T l)zr(79)

and let x̄r,l , w̄r,l , ȳr,l , q̄r,l denote the corresponding components of z̄r,l . (The choice
of constant T will be given later in Lemma 10.) We will focus on the behavior of
each path z̄r,l(·) within the interval [0, T ]. Obviously, if t̃ r → t ′, for all large r and
any integer l ∈ [0,2δr/T − 1], a time u ∈ [0, T ] for the path z̄r,l corresponds to
the time

t̃ r + lT /r + u/r ∈ [t ′ − 3δ, t ′ + 3δ] ∩ R+

on the diffusion time scale, that is, that of x̃r , w̃r , ỹr , q̃r . This in particular means
that the time T for z̄r,l and time 0 for z̄r,l+1 correspond to the same time on the
diffusion time scale.

We start with the following simple lemma which shows that sequences (on r)
of paths z̄r,l , with l possibly dependent on r , have FSPs as their limits.

LEMMA 9. Suppose ω ∈ �2, a subsequence R4(ω) ⊆ R2 and a correspond-
ing bounded nonnegative sequence {t̃ r , r ∈ R4(ω)} are fixed. Consider the family
of paths z̄r,l defined by (79), associated with sequence {t̃ r} and some constants
T > 0 and δ > 0. Assume that c1 ≤ ‖q̄r,l(r)(0)‖ ≤ c2 for all r ∈ R5 ⊆ R4(ω),
where l(r) ∈ [0,2δr/T − 1] are integers and 0 ≤ c1 ≤ c2 < ∞ are constants.
Then, there exists a subsequence Rf ⊆ R5 along which z̄r,l(r) converges (u.o.c.)
to an FSP z with ‖q(0)‖ ∈ [c1, c2].

PROOF. Using properties (71) and (69), it is easy to verify that conditions
(38) and (39) hold for the sequences {f̄ r = 	(rt̃r + l(r)T )f r, r ∈ R5} and
{ḡr = 	(rt̃r + l(r)T )gr , r ∈ R5}. Thus, we can apply Lemma 2. �

The following lemma describes key properties of the family of paths {z̄r,l},
which will imply Lemma 7 almost directly.

LEMMA 10. (i) Suppose the conditions of Lemma 7(i) hold. Let C1 =
κ2κ1C + 2ε. Then, for any sufficiently small ε2 > 0, there exists T > 0
such that, for all sufficiently large r , the following properties (80)–(82) hold
for integer l ∈ [1,2δr/T − 1] and the properties (83)–(84) hold for integer
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l ∈ [0,2δr/T − 1]:
G(q̄r,l(u)) < 2ε2 for u = 0 and u = T,(80)

G(q̄r,l(u)) < 3ε2 for all u ∈ [0, T ],(81)

ȳr,l(u) ≡ ȳr,l(u) − ȳr,l(0) = 0 for all u ∈ [0, T ],(82)

C − 2ε < x̄r,l(u) < C1 for all u ∈ [0, T ],(83)

(C − 2ε)/κ < ‖q̄r,l(u)‖ < 2κC1 for all u ∈ [0, T ].(84)

(ii) Suppose the conditions of Lemma 7(ii) hold. Let C1 = C +2ε. Then, for any
sufficiently small ε2 > 0, there exists T > 0 such that, for all sufficiently large r ,
properties (80)–(84) hold for all integer l ∈ [0,2δr/T − 1] (including 0).

PROOF. (i) Suppose ε2 > 0 is sufficiently small so that conditions q 	= 0 and
G(q) ≤ 3ε2 imply [by (51), (52) and Lemma 4] that ‖q‖ < 2‖q(C)‖ < 2κ(ζ · q),
qn > ε3(ζ · q) for all n ∈ N̄ (C) and some fixed ε3 > 0, and K∗(m,γ × qβ) ⊆
K∗(m, ζ ) for all m.

According to Theorem 2, we can choose a constant T2 ≥ 0 (depending only
on ε2) such that, for any FSP with q(0) 	= 0,

G(q(t)) ≤ ε2 ∀ t ≥ ‖q(0)‖T2.

Then we choose arbitrary

T > 2κC1T2.

(As the formulation of the lemma suggests, we will prove that C1 is the upper
bound on the workload x̄r,l(u) for all l ∈ [0,2δr/T − 1] and all u ∈ [0, T ]. Then,
κC1 and 2κC1 will be the upper bounds on ‖q̄r,(C),l(u)‖ and ‖q̄r,l(u)‖, resp.) Our
choice of T ensures that any FSP with the initial state norm ‖q(0)‖ ≤ 2κC1 is such
that G(q(T )) ≤ ε2.

The basic idea of the proof is as follows. First, we show that in [0, T ]
both x̄r,0(u) and ‖q̄r,0(u)‖ remain bounded above and away from 0, and q̄r,0(T )

must be close to the invariant manifold. Second, we show that, for all integer
1 ≤ l ≤ 2δr/T −1, queue length vector q̄r,l(u) stays close to the invariant manifold
in [0, T ] (in addition to its norm being bounded above and away from 0), which
implies that ȳr,l(u) cannot increase (i.e., workload service rate cannot be “wasted”)
in [0, T ].

Let l = 0. For all large r , we have the following upper bound:

lim sup
r→∞

sup
[0,T ]

‖q̄r,0(u)‖ < κ lim sup
r→∞

‖q̄r,0(0)‖ < κκ1C.(85)

Indeed, if the left-hand side inequality would not hold, then using Lemma 9 we
would be able to choose a subsequence of paths z̄r,0 converging to an FSP z

with q(0) 	= 0 and the norm ‖q(u)‖ increasing to at least κ‖q(0)‖ at some
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time u ∈ [0, T ], which is not possible according to Theorem 2. Bound (85)
automatically implies

lim sup
r→∞

sup
[0,T ]

x̄r,0(u) < κ2κ1C.(86)

Similarly [using Lemma 9 and the fact that, for any FSP, the workload x(·) is
nondecreasing] we obtain the lower bound:

lim inf
r→∞ inf[0,T ] x̄

r,0(u) ≥ C.(87)

Finally, for all large r , we must have

G(q̄r,0(T )) = G(q̄r,1(0)) < 2ε2.(88)

If the inequality above would not hold, then using Lemma 9 and the facts that

lim sup‖q̄r,0(0)‖ < κκ1C < 2κC1,

lim inf ‖q̄r,0(0)‖ > C/κ,

we would be able to construct an FSP z such that C/κ ≤ ‖q(0)‖ ≤ 2κC1 and
G(q(T )) ≥ 2ε2, which is impossible due to our choice of T .

Now consider the behavior of z̄r,l for l ≥ 1. Suppose properties (80)–(84) do not
hold. Then, there exists a subsequence R5 ⊆ R4(ω) and a corresponding sequence
of integers l′ = l′(r) ∈ [1,2δr/T −1] such that (80)–(84) hold for all 1 ≤ l ≤ l′−1,
but at least one of the properties (80)–(84) does not hold for l = l′. (The case l′ = 1
is possible.) This construction and (88) imply that (80) must hold for l = l′ and
u = 0, namely, G(q̄r,l′(0)) < 2ε2. Also by construction [and (87)] we have

x̄r,l′(0) > C − 2ε

and

(C − 2ε)/κ <
∥∥q̄r,l′(0)

∥∥ < 2κC1.

This implies that, for all large r (along R5), the properties (80) and (81) hold
for l = l′ and, in addition, we have

lim inf
r

inf
u∈[0,T ] x̄

r,l′(u) ≥ C − 2ε > 0.(89)

[Otherwise, using Lemma 9, we would be able to construct an FSP z with
x(0) ≥ C − 2ε and ‖q(0)‖ ≤ 2κC1, violating either the property that x(t) is
nondecreasing, or the property that G(q(t)) is nonincreasing, or the property that
G(q(t)) ≤ ε2 for all t ≥ T .]

Properties (81) and (89) imply that (82) must hold for l = l′ for all large r .
Indeed, they (and our choice of ε2) imply that workload x̄r,l′(u) and all critical
queue lengths q̄r,l′

n (u) stay bounded away from 0 in [0, T ]. Then, (81) (along with
our choice of ε2) implies that, for any u ∈ (0, T ], when switch is in a state m, only
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decisions from the corresponding subset K∗(m, ζ ) can be chosen; this [and the fact
that critical queue lengths q̄r,l′

n (u) are bounded away from 0] means that ȳr,l′(·)
cannot increase in (0, T ], which is equivalent to (82) with l = l′.

Now, let us show that (83) and (84) must hold for l = l′ for all large r

(along R5). Given that (82) holds for all 1 ≤ l ≤ l′, we can write

x̄r,l′(u) = x̄r,0(T ) +
l′−1∑
l=1

[x̄r,l(T ) − x̄r,l(0)] + x̄r,l′(u) − x̄r,l′(0)(90)

= x̄r,0(T ) +
l′−1∑
l=1

[w̄r,l(T ) − w̄r,l(0)] + w̄r,l′(u) − w̄r,l′(0)

= x̄r,0(T ) + w̃r (t̃ r + l′T/r + u/r) − w̃r (t̃ r + T/r),

where

|w̃r(t̃ r + l′T/r + u/r) − w̃r(t̃ r + T/r)| < 2ε

for all large r due to our choice of ε and u.o.c. convergence w̃r → w̃. Therefore, if
we recall (86) and (87), we obtain (83) for l = l′. The upper bound in property (84)
(for l = l′ and large r) follows from (83) and (81) (and our choice of ε2), and
the lower bound follows from that in (83) automatically (by our choice of κ).

Thus, we have proved that, for all large r along R5, all properties (80)–(84)
must hold with l = l′. This is a contradiction with the definition of the sequence
{l′(r), r ∈ R5}. The proof of statement (i) is complete.

(ii) The proof of this statement is a simplified version of the proof of (i)
in that we do not need a “special treatment” of the case l = 0. Namely, the
convergence limr x̄r,0(0) = C is employed in place of the estimates (86) and (87),
and G(q̄r,0(0)) < 2ε2 in place of (88). Then, (80)–(84) are proved by contradiction,
by constructing R5 ⊆ R4 and the sequence {l′(r)} the same way as in the proof
of (i) except we allow l′(r) ≥ 0 [as opposed to l′(r) ≥ 1]. Finally, we use

x̄r,l′(u) = x̄r,0(0) +
l′−1∑
l=0

[x̄r,l(T ) − x̄r,l(0)] + x̄r,l′(u) − x̄r,l′(0)

in place of (90). We omit further details. �

PROOF OF LEMMA 7. (i) Let us choose a small ε2 > 0 and a corresponding T

as in Lemma 10(i). If we recall that time u ∈ [0, T ] for z̄r,l corresponds to the time
t̃ r + lT /r + u/r on the diffusion time scale, we see that Lemma 10 implies that,
for all large r , we have

C − 2ε < x̃r(t) < C1 for all t ∈ [t̃ r , t̃ r + (3/2)δ],(91)

‖q̃r (t)‖ < 2κC1 for all t ∈ [t̃ r , t̃ r + (3/2)δ],(92)

ỹr (t) − ỹr (t̃ r + T/r) = 0 for all t ∈ [t̃ r + T/r, t̃r + (3/2)δ],(93)

G(q̃r(t)) < 3ε2 for all t ∈ [t̃ r + T/r, t̃r + (3/2)δ].(94)
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Since ỹr ⇒ ỹ, x̃r ⇒ x̃, and both ỹ and x̃ are RCLL, the properties (91)–(93)
easily imply statements (a)–(c). We know from (52) that ‖p − (ζ ·p)ν‖/‖(ζ ·p)ν‖
is uniformly small for nonzero vectors p ∈ R

N+ with small G(p). Therefore,
(94) and (91), along with the fact that ε2 can be chosen arbitrarily small, imply
statement (d).

(ii) We choose a small ε2 > 0 and a corresponding T as in Lemma 10(ii).
Then, (c′) follows from right-continuity of x̃, estimate (83) (with C1 = C + 2ε

and t̃ r = t ′), and the fact that ε in (83) can be made arbitrarily small by choosing
a sufficiently small δ > 0. To prove (d′), we notice that Lemma 10(ii) implies
that both (94) and (91) hold for all t ∈ [t ′, t ′ + (3/2)δ]. Then, analogously to (d),
property (d′) follows from (94) and (91). �

12.2. Proof of Theorem 1(i). To prove the convergences (20) and (21), it will
suffice to prove the following statement:

As r → ∞ along R2, for any ω ∈ �2 (and, therefore, with probability 1),
we have the following convergences:(

ỹr (t), t ≥ 0
) u.o.c.→ (

ỹ◦(t), t ≥ 0
)
,(95) (

q̃r (t), t ≥ 0
) u.o.c.→ (

q̃◦(t), t ≥ 0
)
,(96)

where ỹ◦ is defined by (19), q̃◦ = x̃◦ν, and x̃◦ = w̃ + ỹ◦.

Let us prove (95) and (96). Consider arbitrary fixed ω ∈ �2. As explained
earlier, for an arbitrary subsequence R3(ω) ⊆ R2, there exists another subse-
quence R4(ω) ⊆ R3(ω) such that the convergence (72), namely, ỹr ⇒ ỹ, holds
along R4(ω). Then the proof of (95) and (96) will be complete if we can prove the
following claims [for the chosen ω, with r → ∞ along R4(ω)].

STEP 1. The limit function ỹ is finite everywhere in [0,∞).

STEP 2. The function ỹ is continuous and ỹ(0) = 0.

STEP 3. If x̃(t) > 0, then t is not a point of increase of ỹ.

STEP 4. ỹ = ỹ◦.

STEP 5. Convergence (95) holds.

STEP 6. Convergence (96) holds.

In this proof, we will use the convention that functions x̃, w̃ and ỹ are defined
additionally at 0− as follows: ỹ(0−) = 0, w̃(0−) = x̃(0−) = w̃(0) [= x̃◦(0)].
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Using this convention, the case ỹ(0) > 0 will be viewed as a discontinuity of ỹ

(and x̃) at 0.
We notice that by Lemma 8(ii) and the remark after the lemma, we have(

q̃r,(NC)(t), t ∈ [0,∞)
) u.o.c.→ 0.(97)

It follows from (97) and the basic relation ‖q̃r,(C)(t)‖ < κx̃r(t) that condition (75)
with any κ1 > κ holds for any sequence {t̃ r , r ∈ R′

4 ⊆ R4(ω)}, satisfying
(73) and (74). For the rest of the proof of Theorem 1(i), we fix an arbitrary κ1 > κ .

PROOF OF STEP 1. Suppose the statement does not hold. Denote t∗ = inf{t ≥
0 | ỹ(t) = ∞}. The inf is attained because ỹ is RCLL.

Let us fix δ > 0, and denote ε∗ = Osc(w̃; [t∗ − 4δ, t∗ + 4δ] ∩ R+). If t∗ > 0, let
us choose � ∈ (0, δ ∧ t∗) and a large C such that C > x̃(t∗ −�)+ 2ε∗; otherwise,
if t∗ = 0, we choose � = 0 and a large C > x̃(0−) + 2ε∗. We define

t̃ r = min{t ≥ t∗ − � | x̃r (t) ≥ C}.
Since ỹ(t) = ∞ for all t ≥ t∗, we see (using the facts that ỹr ⇒ ỹ and ỹ and
all ỹr are RCLL) that lim sup t̃ r ≤ t∗. Our choice of � and C also implies
lim sup x̃r (t∗ − �) < C (again, using properties of ỹ and all ỹr ), which in turn
means that t̃ r > t∗ −� for all large r . We see that (for large r) at time t̃ r , the value
of x̃(·) crosses level C by a positive jump upper bounded as follows:

x̃r (t̃ r ) − x̃r (t̃ r−) ≤ ζ · [f̃ r (t̃ r ) − f̃ r (t̃ r−)].
Then, we must have x̃r (t̃ r ) → C because, as r → ∞, by property (71), the jump
sizes of all functions f̃ r

n (t) become arbitrarily small uniformly on compact sets.
Let us choose a further subsequence R′

4 ⊆ R4(ω) along which

t̃ r → t ′ ∈ [t∗ − �, t∗].
Note that [t ′ − 3δ, t ′ + 3δ] ⊂ [t∗ − 4δ, t∗ + 4δ]. The conditions of Lemma 7(i)
are satisfied for C, δ and {t̃ r , r ∈ R′

4}. Therefore, ỹ is finite in [0, t ′ + δ]—
a contradiction, since t ′ + δ > t∗. Step 1 has been proved. �

PROOF OF STEP 2. Suppose the statement does not hold. The contradiction
is obtained very similarly to the way it is done in the proof of Step 1. Let t∗ be
a discontinuity point, that is, ỹ(t∗−) < ỹ(t∗). (The case t∗ = 0 is not excluded.)
Since x̃ = w̃ + ỹ and w̃ is continuous, x̃(t∗) − x̃(t∗−) = ỹ(t∗) − ỹ(t∗−). There
are two possible cases: (a) x̃(t∗−) > 0 and (b) x̃(t∗−) = 0.

CASE (a). In this case we must have t∗ > 0. [Indeed, if w̃(0) = x̃◦(0) > 0,
then, by Lemma 7(ii) with t̃ r ≡ t ′ = 0 and sufficiently small δ > 0, we have
x̃(0) = x̃◦(0) = w̃(0), which implies that ỹ has no jump at 0. If w̃(0) = 0,
then x̃(0−) = 0.] We can always fix a small δ ∈ (0, t∗) and small � ∈ (0, δ),
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such that t ′ = t∗ − � > 0 is a point of continuity of ỹ (and x̃) and ε∗ =
Osc(w̃; [t∗ − 4δ, t∗ + 4δ] ∩ R+) < x̃(t ′)/2 = C/2. We have convergence
x̃r (t ′) → x̃(t ′) = C (since x̃ is continuous at t ′). The conditions of Lemma 7(i) are
satisfied for C, δ and t̃ r ≡ t ′. Therefore, ỹ cannot increase in the interval (t ′, t ′ +δ)

which contains t∗. So, ỹ cannot have a jump at t∗.

CASE (b). In this case, let us fix a small C > 0 and then a sufficiently small
δ > 0 so that

C∗
1 = κ2κ1C + 2ε∗ < x̃(t∗) and 2ε∗ < C,

where ε∗ = Osc(w̃; [t∗ − 4δ, t∗ + 4δ] ∩ R+). If t∗ > 0, we fix a small
� ∈ (0, δ ∧ t∗) such that x̃(t∗ − �) < C; otherwise, if t∗ = 0, we set � = 0.
Analogously to the way it was done in the proof of Step 1, we define t̃ r =
min{t ≥ t∗ −� | x̃r (t) ≥ C} and observe that we can choose a further subsequence
R′

4 ⊆ R4(ω) along which t̃ r → t ′ ∈ [t∗ − �, t∗]. The conditions of Lemma 7(i)
are satisfied for C, δ and {t̃ r , r ∈ R′

4}, and so we must have

x̃(t) < C1 = κ2κ1C + 2 Osc(w̃; [t ′ − 3δ, t ′ + 3δ] ∩ R+) ≤ C∗
1

for all t ∈ [t ′, t ′ + δ], which is impossible since C∗
1 < x̃(t∗) and t∗ ∈ [t ′, t ′ + δ].

Step 2 has been proved. �

PROOF OF STEP 3. Let t∗ ≥ 0 be such that x̃(t∗) > 0. If t∗ = 0, then the
fact that ỹ does not increase in some interval (0, δ] follows from Lemma 7(i) with
t̃ r ≡ t ′ = 0, if we choose δ sufficiently small. If t∗ > 0, then precisely the same
construction as in the proof of Step 2(a) shows that ỹ does not increase in some
interval (t ′, t ′ + δ) containing t∗. Step 3 has been proved. �

PROOF OF STEP 4. This follows from the statements of Steps 2 and 3, and
Proposition 4 (in the Appendix). �

PROOF OF STEP 5. This follows from ỹr ⇒ ỹ◦, along with the facts that ỹ◦ is
continuous nondecreasing with ỹ◦(0) = 0, and ỹr is nondecreasing with ỹr (0) = 0.

�

PROOF OF STEP 6. It suffices to show that, for any t∗ ≥ 0 and any ε > 0, there
exists δ > 0, such that

lim sup
r→∞

sup
ξ∈[t∗−δ,t∗+δ]∩R+

‖q̃r (ξ) − q̃◦(ξ)‖ < ε.(98)

(The u.o.c. convergence will then follow from the Heine–Borel lemma.) Since
q̃◦(t) ≡ x̃◦(t)ν and, by (95), x̃r → x̃◦ (u.o.c.), to prove (98) it suffices to prove

lim sup
r→∞

sup
ξ∈[t∗−δ,t∗+δ]∩R+

‖q̃r (ξ) − x̃r (ξ)ν‖ < ε.(99)
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If x̃◦(t∗) = 0, then property (99) must hold because both functions ‖q̃r‖ and x̃r

(for large r) are bounded by an arbitrarily small constant in a sufficiently small
neighborhood of t∗. [This is implied by the following facts: x̃r → x̃◦ (u.o.c.),
‖q̃r,(C)(t)‖ ≤ κx̃r (t) and (97).] If x̃◦(t∗) > 0 and t∗ = 0, then (99) follows from
Lemma 7(ii) with t̃ r ≡ t ′ = 0 and sufficiently small δ > 0. If x̃◦(t∗) > 0 and t∗ > 0,
then to obtain (99) we can repeat the construction of the proof of Step 2(a) and
then apply Lemma 7(i). Step 6 has been proved, and this completes the proof of
Theorem 1(i). �

12.3. Proof of Theorem 1(ii). The probability space (�,F ,P ) is the one
constructed earlier, same as in the proof of Theorem 1(i). Consider arbitrary
scheduling discipline G. For arbitrary fixed ω ∈ �, consider paths of x̃r

G, ỹr
G

and w̃r
G, corresponding to discipline G. Since these paths are constructed on the

same probability space as the paths corresponding to the MaxWeight discipline,
we have w̃r

G = w̃r and therefore w̃r
G → w̃G = w̃ u.o.c.

We claim that, along sequence R,

lim inf
r→∞ x̃r

G(t) ≥ x̃◦(t), t ≥ 0.(100)

Indeed, as explained earlier, for any subsequence R3(ω) ⊆ R, we can choose
a further subsequence R4(ω) ⊆ R3(ω) such that ỹr

G ⇒ ỹG, where ỹG is some
nondecreasing nonnegative function in D([0,∞), R̄). Therefore, for any t > 0
where ỹG(·) is continuous, as r → ∞ along R4(ω),

lim x̃r
G(t) = w̃(t) + ỹG(t),

and w̃(t) + ỹG(t) ≥ 0 [since x̃r
G(t) ≥ 0]. Then, w̃(t) + ỹG(t) ≥ 0 for all t ≥ 0

(by right-continuity). By Proposition 4 (in the Appendix), ỹG(t) ≥ ỹ◦(t) for
all t ≥ 0. This and the continuity of ỹ◦ implies that, for any t ≥ 0, (100) holds along
the subsequence R4(ω), and therefore along R [since the subsequence R3(ω) can
be arbitrary]. The pathwise lower bound (100) implies (22).

13. Conclusions. The main conclusion of this work is that, even for quite
general queueing systems, allowing flexible allocation of service resources and
randomness of the service environment, the workload minimization property
(and additional optimality properties, like holding cost minimization) in heavy
traffic can be achieved by parsimonious dynamic (“on-line”) rules, not requiring
information on the mean input rates, and not requiring any “precomputation” of
rule parameters or any “preallocation” of the service resources. Our analysis is
for the generalized switch model and we prove that the MaxWeight rule possesses
such “nice” properties. We believe that main parts of this analysis are quite general,
in particular the analysis of convergence properties of fluid sample paths, which
relies on a Lyapunov function (� in our case), a key differential inclusion [(57) in
our case] showing that the derivative of this Lyapunov function is minimized at
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all times [as in (58)], and geometry of the rate region. As a result, the approach
and techniques used in this paper may be useful in analysis of MaxWeight-
type algorithms for other models, in particular those for which MaxWeight-type
algorithms have already been defined in the previous work such as [29, 31, 32].

Finally, we believe that the MaxWeight discipline (or other parsimonious
dynamic disciplines having similar optimality properties) is very attractive in
applications. The RP condition, which is required for the optimality properties
to hold, is common in applications.

APPENDIX

A.1. Linear programming characterization of the RP condition. As we
mentioned before, a linear programming characterization can be done along the
lines of [14, 16, 20, 21, 36], where such characterization was in fact used as a
definition of the heavy traffic regime and resource pooling.

Suppose a vector of mean rates λ ∈ R
N++ is given. The first step is to define

the system load ρ. In the work cited above, the load ρ is defined as the minimum
possible upper bound on the utilization of individual servers, such that the average
service rates λ can be achieved. This ρ is determined by a linear program. In our
case there are no individual servers (resources). Consequently, a natural definition
of load, which is consistent with the previous work (i.e., could be used in the
previous work and produce the same answer), is ρ = 1/c∗, where c∗ is the
maximum factor by which vector λ can be scaled until the boundary of the rate
region is hit. The linear program to determine c∗ is as follows. We will refer to it
as the primal problem:

max
c,φ

c(101)

subject to ∑
m∈M̄

πm

∑
k∈K(m)

φmkµ
m
n (k) ≥ cλn, n ∈ N̄,(102)

∑
k∈K(m)

φmk = 1, m ∈ M̄,(103)

φmk ≥ 0, m ∈ M̄, k ∈ K(m),(104)

c ∈ R.(105)

Note that the set of constraints (102) is equivalent to the condition v(φ) ≥ cλ.
Let (φ∗, c∗) be any fixed optimal solution of this linear program. (We must

have c∗ > 0, since set V̄ contains elements with all positive components.)
Obviously, v∗ = c∗λ ∈ V̄ ∗ is the point of the boundary of V̄ which we “hit”
by scaling vector λ. Therefore, the condition ρ = 1/c∗ = 1 is equivalent to the
condition that λ is on the rate region boundary, that is, λ = v∗.
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Theorem 3 shows how the RP condition for v∗ and the corresponding outer
normal vector ζ are characterized in terms of the following linear program dual
to (101)–(105):

min
ζ,α

∑
m∈M̄

αm,(106)

where ζ = (ζ1, . . . , ζN) and α = (αm,m ∈ M̄) are subject to constraints∑
n∈N̄

ζnλn = 1,(107)

αm ≥ ∑
n∈N

ζnπmµm
n (k), m ∈ M̄, k ∈ K(m),(108)

ζn ≥ 0, n ∈ N̄,(109)

αm ∈ R, m ∈ M̄.(110)

(Basic linear programming facts we use in this section can be found, e.g., in
Sections 5.1–5.4 of [19].)

THEOREM 3. Consider vector v∗ ∈ V̄ ∗ defined as above. Then, vector
ζ ∗ ∈ R

N+ is part of an optimal solution (ζ ∗, α∗) of the dual linear prog-
ram (106)–(110) if and only if ζ ∗ is an outer normal vector to V̄ at point v∗
and ζ ∗ · λ = 1.

Theorem 3 immediately implies that the RP condition for the vector v∗ is
equivalent to the uniqueness of the vector of dual variables ζ ∗ across all optimal
solutions (ζ ∗, α∗) to the dual linear program (106)–(110). And if ζ ∗ is unique, it is
(up to a scaling by a positive constant) the normal vector ζ associated with the RP
condition. [Also, as a byproduct of the proof of Theorem 3, it is easy to see that
the uniqueness of ζ ∗ is in fact equivalent to the uniqueness of the entire optimal
solution (ζ ∗, α∗).]

PROOF OF THEOREM 3. First, recall that (φ∗, c∗) is a fixed optimal solution
to the primal problem, v∗ = c∗λ, and therefore the set of constraints (102)
for (φ∗, c∗) can be compactly written as v(φ∗) ≥ v∗. Also, note that the Lagrangian
form for the pair of primal problem (101)–(105) and dual problem (106)–(110) is

L(φ, c; ζ,α) = c + ∑
n∈N̄

ζn

[ ∑
m∈M̄

πm

∑
k∈K(m)

φmkµ
m
n (k) − cλn

]

+ ∑
m∈M̄

αm

(
1 − ∑

k∈K(m)

φmk

)

= c + ζ · [v(φ) − cλ] + ∑
m∈M̄

αm

(
1 − ∑

k∈K(m)

φmk

)
,
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with the domain defined by (104), (105), (109) and (110).
Consider a fixed optimal solution (ζ ∗, α∗) of the dual problem (106)–(110).

We have ζ ∗ ∈ R
N+ [by (109)] and ζ ∗ ·λ = 1 [by (107)]. Also, by the complementary

slackness conditions, we have

ζ ∗ · [v(φ∗) − v∗] = 0.(111)

Let us prove that ζ ∗ is normal to V̄ in point v∗.
We know that φ∗ must maximize

L(φ, c∗; ζ ∗, α∗) = ζ ∗ · v(φ) + c∗[1 − ζ ∗ · λ] + ∑
m∈M̄

α∗
m

(
1 − ∑

k∈K(m)

φmk

)

over all φ satisfying (104), and in particular over those satisfying in addition (103)
(because φ∗ itself satisfies it). We see that φ∗ maximizes ζ ∗ · v(φ) over all φ

satisfying (104) and (103), which implies that v(φ∗) maximizes ζ ∗ · v over all
v ∈ V̄ . But, according to (111), ζ ∗ · v∗ = ζ ∗ · v(φ∗), so we have

v∗ ∈ arg max
v∈V̄

ζ ∗ · v,(112)

which means that ζ ∗ is normal to V̄ in point v∗.
To prove the converse, consider an arbitrary outer normal vector ζ ∗ to V̄

in point v∗ [which means that (112) holds], such that ζ ∗ · λ = 1. (Necessarily,
ζ ∗ ∈ R

N+ , since v∗ ∈ V̄ ∗.) Since v(φ∗) ≥ v∗ and v(φ∗) ∈ V̄ , it follows from (112)
that ζ ∗ · v(φ∗) = ζ ∗ · v∗ and, therefore,

v(φ∗) ∈ arg max
v∈V̄

ζ ∗ · v.(113)

In turn, (113) means that φ∗ maximizes

ζ ∗ · v(φ)

over φ satisfying (104) and (103), and, moreover, the maximum value of the
objective (in the last display) is c∗, because ζ ∗ · v(φ∗) = c∗ + ζ ∗ · [v(φ∗) − c∗λ],
c∗λ = v∗, and ζ ∗ · v(φ∗) = ζ ∗ · v∗. This is equivalent to the fact that φ∗ is an
optimal solution of the linear program

max
φ

∑
n∈N̄

ζ ∗
n

[ ∑
m∈M̄

πm

∑
k∈K(m)

φmkµ
m
n (k)

]
(114)

subject to (103) and (104), and the maximum in (114), attained with φ = φ∗, is c∗.
The linear program dual to (114), (103), (104) is

min
α

∑
m∈M̄

αm,(115)
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subject to

αm ≥ ∑
n∈N̄

ζ ∗
n πmµm

n (k), m ∈ M̄, k ∈ K(m),(116)

αm ∈ R, m ∈ M̄.(117)

Let us fix arbitrary optimal solution α∗ of the problem (115)–(117). Then
(by duality)

∑
m∈M̄ α∗

m = c∗. Also, we see that the pair (ζ ∗, α∗) satisfies all
the constraints of the problem (106)–(110). Finally, since c∗ is the optimal
objective function value of the primal problem (101)–(105), then—again by
duality—(ζ ∗, α∗) is an optimal solution of (106)–(110). �

A.2. Proof of property (71). Since our input processes are i.i.d., according to
Bramson’s weak law estimate ([4], Proposition 4.2), for any T3 > 0, any ε > 0 and
any n ∈ N̄ , for all large r , we have the following estimate, uniformly on integer l,
0 ≤ l ≤ T3r :

P

{
max
ξ∈�l

∣∣r(
f r

n (l + ξ) − f r
n (l)

) − λnχ(ξ)
∣∣ ≥ εr̄

}
≤ ε/r̄,

where �l is the (finite) subset of ξ ∈ (0,1] such that r(l + ξ) is an integer
[or, equivalently, where f r

n (l + ξ) may jump], r̄ = �r�, and χ(ξ) ≤ r̄ is the
cardinality of (0, ξ ] ∩ �l . If we rewrite this as

P

{
max
ξ∈�l

|f r
n (l + ξ) − f r

n (l) − λnχ(ξ)/r| ≥ εr̄/r

}
≤ ε/r̄,

notice that the function (χ(ξ)/r, ξ ∈ [0,1]) uniformly converges to the identity
function (ξ, ξ ∈ [0,1]), and recall that f r

n (l + ξ) − f r
n (l) can only jump at

points �l , then by rechoosing ε we easily obtain the following extension of the
above estimate to “continuous time” ξ :

P

{
sup

0≤ξ≤1
|f r

n (l + ξ) − f r
n (l) − λnξ | ≥ ε

}
< ε/r.

Thus, for any T3 > 0, any ε > 0 and any n ∈ N̄ , for all large r , we have

P

{
max

0≤l≤T3r
sup

0≤ξ≤1
|f r

n (l + ξ) − f r
n (l) − λnξ | ≥ ε

}
< (T3 + 1)ε.(118)

Let us choose a sequence of pairs (T
(i)

3 , ε(i)), i = 0,1,2, . . . , such that T
(i)

3 ↑ ∞,
ε(i) > 0 for all i, and ∑

i

(
T

(i)
3 + 1

)
ε(i) < ∞.

Let us choose a subsequence R2 ⊆ R1 as follows. We pick arbitrary r(0) ∈ R1.
Then, sequentially, for each index i ≥ 1, we choose r(i) > r(i − 1), r(i) ∈ R1,
such that (118) holds for T3 = T

(i)
3 , ε = ε(i) and r = r(i). Property (71) then

follows from the Borel–Cantelli lemma.
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A.3. Proof of Lemma 8. The proof of Lemma 8 uses constructions and
arguments similar to those used in Section 12.1 in the proof of Lemma 7. (At one
point Lemma 7 itself is applied.) Consider the family of fluid-scaled paths {z̄r,l}
defined by (79) in Section 12.1 for each integer l ∈ [0,2δr/T − 1], where T > 0
is a fixed constant.

LEMMA 11. (i) Suppose the conditions of Lemma 8(i) hold and C1 =
κ2κ1C + 2ε with κ1 = 2κ . Then, for any sufficiently small ε2 > 0 and ε4 > 0,
there exists T > 0 such that, for all sufficiently large r , the following proper-
ties (119)–(122) hold for integer l ∈ [0,2δr/T − 1] and the property (123) holds
for integer l ∈ [1,2δr/T − 1]:

‖q̄r,l(0)‖ < 2κC1 and ‖q̄r,l (T )‖ ≥ ε4 imply
(119)

G(q̄r,l(T )) < 2ε2,

ε4 ≤ ‖q̄r,l(0)‖ < 2κC1 and G(q̄r,l(0)) < 2ε2 imply
(120)

G(q̄r,l(u)) < 3ε2 ∀u ∈ [0, T ],
‖q̄r,l(0)‖ < 2κC1 implies

(121)
‖q̄r,l(u)‖ < κ‖q̄r,l (0)‖ + ε4 ∀u ∈ [0, T ],

x̄r,l(u) < C1 and ‖q̄r,l (u)‖ < 2κC1 ∀u ∈ [0, T ],(122)

‖q̄r,l(u)‖ > κε4 + ε4 implies G(q̄r,l(u)) < 3ε2 ∀u ∈ [0, T ].(123)

(ii) Suppose the conditions of Lemma 8(ii) hold. Then, for any sufficiently small
ε2 > 0 and ε4 > 0, there exists T > 0 such that, for all sufficiently large r , all
properties (119)–(123) hold for all integer l ∈ [0,2δr/T − 1].

PROOF. (i) We choose ε2 > 0 and T > 0 the same way as in the proof of
Lemma 10 in Section 12.1. Let us fix an arbitrary ε4 > 0 such that κε4 +ε4 < 2κC.

Properties (119)–(121) are proved by contradiction, using Lemma 9 analo-
gously to the argument we employed repeatedly in the proof of Lemma 10.
Namely, if (119) would not hold, we would be able to construct an FSP with
‖q(0)‖ ≤ 2κC1 and G(q(T )) ≥ 2ε2 which contradicts our choice of ε2. If (120)
would not hold, we would be able to construct an FSP violating the property
that G(q(t)) is nonincreasing. Finally, if (121) would not hold, we would be able
to construct an FSP with ‖q(t)‖ ≥ κ‖q(0)‖ + ε4 for some t ≥ 0.

Let us prove (122) by contradiction. Suppose there is an infinite subsequence
R5 ⊆ R4(ω) along which (122) does not hold for at least one l ∈ [0,2δr/T − 1]
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and some u ∈ [0, T ]. For each r ∈ R5, let l∗ be the smallest l such that, for some
u ∈ [0, T ], either of the following two inequalities holds:

x̄r,l(u) ≥ C,(124)

‖q̄r,l (u)‖ ≥ 2κC.(125)

For large r , we must have l∗ ≥ 1 because, for l = 0, we have

lim sup
r

sup
u∈[0,T ]

‖q̄r,0(u)‖ ≤ κC2 < 2κC < 2κC1(126)

[for otherwise we would be able to construct an FSP with ‖q(0)‖ = C2 and
‖q(t)‖ > κC2 for some t > 0], which means that, for large r and u ∈ [0, T ],
we have

x̄r,0(u) < κ2C2 < C < C1.(127)

Finally, let u∗ denote the smallest value of u for which (124) or (125) holds for the
corresponding l∗. (Thus, both l∗ and u∗ are functions of r .) We must have u∗ > 0,
because u∗ = 0 would contradict the choice of l∗.

The following property is true for all large r ∈ R5:

(123) holds for all integer l ∈ [1, l∗].(128)

Indeed, from (121) we know that, for l ≤ l∗ and u ∈ [0, T ], ‖q̄r,l(u)‖ > κε4 + ε4
implies ‖q̄r,l(0)‖ > ε4 and therefore, by (119), G(q̄r,l(0)) < 2ε2. Then, by (120),
we must have G(q̄r,l(u)) < 3ε2, which proves (128).

As a consequence of (128) and the choice of ε2, for all integer l ∈ [1, l∗] and all
u ∈ [0, T ], ‖q̄r,l (u)‖ > κε4 +ε4 implies ‖q̄r,l(u)‖ < 2κx̄r,l(u). Thus ‖q̄r,l∗(u∗)‖ ≥
2κC > κε4 + ε4 always implies x̄r,l∗(u∗) ≥ C. We see that, in fact, for l = l∗
and u = u∗, condition (124) must hold. Let us denote t̃ r∗ = t̃ r + [l∗T + u∗]/r .
[This t̃ r∗ is a time on the diffusion time scale, i.e., that of the processes x̃r (·)
and q̃r (·).] We must have x̃r (t̃ r∗) → C because, by property (71), the positive
jump sizes of (diffusion-scaled) functions x̃r (t) become arbitrarily small uniformly
over compact sets. Let us choose a further subsequence R6 ⊆ R5 along which
t̃ r∗ → t ′∗ ∈ [t ′, t ′ +2δ]. Note that [t ′∗ −3(2δ), t ′∗ +3(2δ)] ⊆ [t ′ −9δ, t ′ +9δ]. We see
that the conditions of Lemma 7(i) (with R4, κ1, δ, t̃ r and t ′ replaced by R6, 2κ ,
2δ, t̃ r∗ and t ′∗, resp.) hold for the δ and ε we consider. Thus, by Lemma 7(i),
x̃r (t) < C1 and ‖q̃r (t)‖ < 2κC1 for all t ∈ [t̃ r∗ , t̃ r∗ + 2δ] and all large r ∈ R6.
This and the construction of times t̃ r∗ imply that (122) must hold for all large
r ∈ R6—a contradiction to the choice of R5. The proof of (122) is complete.

Now, given that (122) provides uniform bound ‖q̄r,l(u)‖ < 2κC1 for all
u ∈ [0, T ] and all large r ∈ R4(ω), we obtain property (123) by repeating
(for arbitrary integer l ∈ [1,2δr/T − 1]) the argument we used above in the proof
of (128). The proof of Lemma 11(i) is complete.
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(ii) In addition to the statement of (i), we only need to show that (123) holds
also for l = 0 for all large r . Given the additional condition that either q̄r,0(0) → 0
(if C2 = 0) or G(q̄r,0(0)) → 0 (if C2 > 0), we see that the argument used in the
proof of (123) for l ≥ 1 applies to the case l = 0 as well. �

PROOF OF LEMMA 8. (i) We apply Lemma 11(i). Statement (a) follows
from (122), x̃r ⇒ x̃ and right-continuity of x̃. Property (123), which holds
for l ∈ [1,2δr/T − 1], means that, for all large r and any t ∈ [t ′ + δ′, t ′ + δ], either
‖q̃r (t)‖ ≤ κε4 + ε4 or G(q̃r(t)) < 3ε2. Since we have ‖q̃r,(NC)(t)‖ ≤ ‖q̃r (t)‖,
‖q̃r,(NC)(t)‖ ≤ ‖q̃r (t)− x̃r (t)ν‖, property (52) and the uniform bound x̃r (t) < C1,
we can make ‖q̃r,(NC)(t)‖ arbitrarily small uniformly in [t ′ + δ′, t ′ + δ] for large r ,
if we choose sufficiently small ε2 > 0 and ε4 > 0. This proves (b).

(ii) To prove (b′) we use Lemma 11(ii) and the same argument as in the proof
of (i)(b), except this argument now applies to all t ∈ [t ′, t ′ + δ]. �

A.4. One-dimensional Skorohod problem. The following proposition de-
scribes standard properties of solutions of the one-dimensional Skorohod problem.

PROPOSITION 4. Let w = (w(t), t ≥ 0) be a continuous function in
D([0,∞),R) such that w(0) ≥ 0. Then the following hold:

(i) There exists a unique pair (x, y) of functions in D([0,∞), R̄), such that:

(a) x(t) = w(t) + y(t) ≥ 0, t ≥ 0,
(b) y is nondecreasing and nonnegative,
(c) y(0) = 0,
(d) for any t ≥ 0, if x(t) > 0, then t is not a point of increase of y.

This unique pair is (x◦, y◦), where

y◦(t) .= −
[
0 ∧ inf

0≤u≤t
w(u)

]
, x◦(t) = w(t) + y◦(t), t ≥ 0.

(ii) For any pair (x, y) of functions in D([0,∞), R̄) satisfying (a) and (b),
we have

y(t) ≥ y◦(t), x(t) ≥ x◦(t), t ≥ 0.

The proof of Proposition 4 can be found, for example, in [8]. (It is also
contained in the proof of Theorem 5.1 of [34]. More precisely, it can be
obtained using the argument proving inequality (8) in [34].) Note that the
formulation of Proposition 4(ii) is formally more general than a more conventional
formulation, in which x, y ∈ D([0,∞),R) (i.e., x and y required to be finite) and
condition y(0) = 0 is included into (b). However, this more general statement is
proved the same way as the conventional one, with straightforward adjustments.
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