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Abstract—A model for wireless networks with slotted-Aloha-
type random access and with multi-hop flow routes is consided.
The goal is to devise distributed algorithms for utility-optimal
end-to-end throughput allocation and queueing stability.A class
of queue back-pressure random access algorithms (QBRAS), in

context of wireless networks, MaxWeight algorithms tyjiica
need to be centralized for implementation. Some recent svork
(e.g. see [8], [12] and the references therein) propose dis-
tributed solutions of the MaxWeight algorithm, but such im-

which actual queue lengths of the flows in each node’s closePlementations also require heavy signaling procedureseho
neighborhood are used to determine the nodes’ channel acees complexity relies on the size of the network. The impact of

probabilities, is studied. This is in contrast to some prewusly
proposed algorithms, which are based on deterministic opiniza-
tion formulations and are oblivious to actual queues. QBRA $
also substantially different from the well studied “MaxWeight”
type scheduling algorithms, even though both use the concepf
back-pressure.

For the model with infinite backlog at each flow source, it is
shown that QBRA, combined with simple congestion control loal
to each source, leads to optimal end-to-end throughput alkation
within the network saturation throughput region achievable by
random access, without end-to-end message passing. Thifeme
is generalized to the case with minimum flow rate constraints
For the model with stochastic exogenous arrivals, it is show
that QBRA ensures stability of the queues as long as nominal
loads of the nodes are within the saturation throughput regon.
Simulation comparison of QBRA and the queue oblivious randm
access algorithms, shows that QBRA reduces end-to-end dg&a

Index Terms

central coordination, and excessive signalling overheathe
overall performance has not been quantified, or extensively
studied, and yet remains unclear. Another class of wire-
less scheduling schemes, known as random access (“slotted-
Aloha-type”) algorithms, typically provide smaller thrgluput
regions, but are simpler and more amenable to distributed
implementations. In this paper we consider a model of random
access for multi-hop transmissions.

Random access models have been widely adopted in con-
temporary works, such as [1], [2], [4]-[7], [9], [10], [13],
[15] and [16]. Informally, we can classify them into two
categories: “pure optimization-based” algorithms (e5§, [6],

[10], [15] and [9]) and dynamic, queue-length based stiateg
(e.q. [2], [7], [23] and [4]). Algorithms of the former type
solve an optimization problem that allocates network reses!
(e.g. effective link throughputs) to satisfy and/or optimi
traffic demands of different flows; they require optimizatio

Aloha, Random Access, Distributed Algorithm, Queue Backs,.ometers to be specified a priori and are typically ohlisio

Pressure, Stability, Throughput Region.

|. INTRODUCTION

to the dynamics of actual queues in the network. Moreover,
the iterative algorithms in [5], [15] and [6] involve end-¢émd
message passing within the network; the revised algorithms

In wireless ad hoc networks, contention resolution argtoposed in [10] and [9] reduce the signaling to a cluster of

interference management among links are among the most interfering nodes but the convergence and optimality haenb
portant issues, which motivates the extensive study ofl@ésee shown only in a single-hop transmission model. The latter
medium access control (MAC) protocols. The standard MA@pe algorithms, including the Queue-length based Random
protocol currently used in IEEE 802.11 [3] is the Distrilaite Access (QRA) algorithm in [2] and [13], and the constantetim
Coordination Function (DCF) with Binary Exponential Backdistributed scheduling policy which coincides with a carta
off (BEB) mechanism. However, it has been concluded kype of QRA in particular systems in [7] and [4], are operated
many researchers that DCF with BEB mechanism for cohy adaptively responding to actual queueing dynamics and
tention control can be inefficient and unfair, eg. [11]. Thushus guarantee queueing stability of the system. In pdaticu
there are significant challenges in designing MAC protocaler the class of QRA algorithms, even though in some cases
that are both efficient in terms of throughput, latency, gperthey appear to have the same optimization objective as the
consumption, etc., and allow distributed implementatian-m former optimization-based algorithms, they do not need a

imizing signalling or message passing overhead.

priori knowledge of traffic flow input rates to achieve queggi

It has been shown that the maximum throughput region catability if such is feasible. It worth noting that the preus
be achieved by much studied “MaxWeight’-type schedulingtudies of dynamic random access in the latter type ( [2], [7]
algorithms as originally proposed in [14]. However, in th§l3] and [4]) all assume a traffic flow model with single-hop
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transmission without multi-hop routes.

In this paper we propose and study a classqoeue
back-pressure random accel@@BRA) algorithms for a multi-
hop network, and generally with multi-hop end-to-end flows.
The algorithms use flow queue differentials on the links
to determine link access probabilities, while the MaxWeigh
algorithms use queue differentials as well, but in a congpjet



different way. Our main contributions are as follows. and use index for either one. Letl, C £ denote the set

(i) For the problem of utility-optimal end-to-end throughtp of links on router, and index linksl € £, from source to
allocation in the model of saturated sources, as considaredlestination in an ascending order s, ), j = 1,2,3,---.
Section V, we prove that QBRA combined with extremelyVe also assume each node maintains separate queues of data
simple congestion control at each flow source, solves tpackets of different flows. Le@l(r) denote the queue length
problem ofweighted proportional faif(sum-log utility) end- of flow r packets located in the transmitter notleof link
to-end throughput allocation among the flows. We also proyez £,. To simplify notation, we often WritGZQY) to mean
an extension of this result for the case of additional manl(r) i.e. for the queue length of flow at the j-th node in

mum flow-rate constraints. This generalizes and considipraﬁs(’r‘g&'te

strer.lgthens.the corresponding result in [2].. Th_e resuIQ]n_[ The system operates in discrete (or, slotted) time=
applies to single-hop flows and proves optimality of equili 1,2,---. In any time slot, each node may attempt to transmit

fium b#t not convergence towa_rdsl qu'l'br'uml: |thd(;es N%ne packet at most on one of its outgoing links. A packet trans
§ftate the converg(le(nce tlo an orr]mma p_om}.— (;]n?:jt € ?Ct tr]h%ssion attempt on a link is successful if it is not “inteddr
It convergence takes place, then optimality holds. A. Urth@fiey by another simultaneous transmission during the same
generalization - to more general utility functions - is als§me sjot: otherwise the transmission fails. The intenfere
possible, and will be considered as future work. model is the same as in [13] and [2], and is somewhat more

(i) For the pr(_)blem of que_ueing _stability_ in the mOdebeneral than in [15]. First, any transmission attempt to @eno
of exogenous arrivals as considered in Section V1, we PrOWRiI fail if this node is transmitting. Second, if there aned

that QBRA “"automatically” ensures stability without knawsi . ,re simultaneous transmissions to the same node, they al
input rates, as long as nommal_ Ilnk_loads are within thﬁil. Third, for each node there is the set of nodes, C A’
networksatgr_atlon throughput reglorlThls generallzgs SOMEith which it interferes, namely, a transmission to any node
of the stability results in [13], which apply to smgle-hoqn N, will fail if node n transmits. Note that according to our

flows. The stability proof in this paper is conducted with dlui interference modek € A, andD,, C A\, whereD,, C A'\n
limit techniques but using a novel Lyapunov function that i& the set of nodes: to which noden has data to send. In

substantially different than that in [13] - the proof in [Idjes summary, a transmission attempt on link £ is successful if

not generalize to the multi-hop case. We will elaborate as thand only if no node in the set : n # t,, 1 € A, } transmits
: , n .

n §_eclt:|_on IY_D' ¢ simulati it ideired For eachn let us defineS,, = {l € £ : r, € N,,}. This
(iii) Finally, we present simulation results as consideire set includes links originating at and links interfered with

Section VI, with avariety of parametgr setting, showinggo y transmissions fromn. We consider thdink dependence

performance of QBRA, in particular in terms of end—to-engraph as defined in [2], i.e. the directed graph with vertices

delays. being links! € £, in which the edge froni to another vertex

' € L exists if and only ifl’ € S;,. Throughout the paper we

assume thetrong connectivityf the link dependence graph,
Typically, we use bold letters, y,... to denote vectors, which assumes that there exists a directed path between any

as opposed to scalars,y,.... We use the notation®, two vertices.

R, and R, for the set of real, real non-negative and

real positive numbers, respectively. Correspondinglimes

product spaces are denoted 2%, R? andR% . We write B. Saturation Throughput Region and its Properties

a -y to denote scalar product, ank|| = vz for the  g,55550 the network employs a slotted-Aloha-type random
Euclidean norm, inducing the standard metric. Cardindliey  5cces5 protocol. Recall that each node maintains separate
the number of elements) of a finite sdtis denoted by.A|. queues for the packets of different flows. In each time slot

+_ e ) "
We denotelz| " = ma)}f{z’o}' _ , ities” noden attempts a transmission with probabilify,, and
We use=, <, -, > for componentwise vector inequalities,yoses to transmit data from quead” on fink ¢ with

e.g.x > y meanse; > y;, Vi. For any scalar functioft’ : R . S (r ” . .
RgT(w)y: (T(21) y T(zq)) andyfor any subset € Rj conditional probablhtypl( )/Pn, Wherepl( ) > 0 is defined

II. BASIC NOTATION AND DEFINITIONS

T(C) = {T(v):v € C}. for each pair(r, ) such thatn = ¢; andl € L,. ThUS,pl(T) is
' the resulting probability of transmission of claspackets on
link {, and

I1l. SYSTEM MODEL
A. Wireless Network Model P, = Z Z plr) <1, VnenN. (1)

We consider a wireless multi-hop network described as a b=ty riieLn
directed graphG = (N, L), where \ is the set of nodes We defineP to be the set of all feasible vectors of liakcess
and L is the set of the logical (directed) communication link®robabilitiesp = (", L€ L,, reR}. Obviously,
between pairs of nodeg; and r; are the transmitter and . d.
receiver nodes respectively of lirk There is a finite number P={pcl":P<1, VneN} 2)
of traffic flows, indexed by- € R; each flow has fixed sourcewhere d = > . |L.|. Given p € P, the transmission
and destination nodes, and a fixed route. Here throughout #itempts by all nodes are independent, and then the regultin
paper, we will use the terms flow and route interchangeabéyerage successful transmission rate (or, average thpotigh



allocated to flowr on the linkl € £, is transmitter node of link(r, j) at time ¢, where the notation

r r I(r, 7) is based on the conventiad\” = Q" ... Then,
nDp)=p" [ - P @3 J) @ = Q.
n 11EN, r . r .
e 1) = {9 O+ADD @), =1
We will use notatiorny(p) = {1" (p), | € L., r € R}. : Qg-r)(t) + h;r_)l(t) — hlg.r)(t), 1<j<|Ly]

Definition 1: We define the systersaturation throughput
region M as the set of all possiblg(p), along with the wherehg.r) = 1 if there is a successful transmission of a flow
vectors dominated by them, namely, r packet on link(r, j) in slot ¢, andhy) = 0 otherwise.

M={ve[0,1]":TpecP, st.v=p(p))} 4)
We also define the log-throughput regitug M by

IV. DYNAMIC QUEUE BACK-PRESSURERANDOM ACCESS

In this section we introduce a dynamic distributed algonith

logM = {u=logv:v € M,v e Ri+} called Queue Back-Pressure Random Acc@3BRA), which

is the main subject of this paper. The algorithm generalizes

the Queue Length Based Random Access (QRA) scheme,

log M]* ={u € log M: if u < u' € logM,thenu =w'}.  introduced in [13] and [2] for the special case of our model,

where all routes have length one. Under QRA, nodes choose

Proposition 1: (Follows from Lemma 1 and Theorem 2 inheir access probabilitigs dynamically, according to formula

[2]) The log-throughput regiodog M is convex and the (5) with link weightsw,” at time  being a fixed function

boundaryllog M]* is a smooth{d — 1)-dimensional surface in ¢ 1o current queue Iengtb)l(r)(t)- In the simplest form,

R4, which can be parametrized by the vectors of posiive () (r) .
weightsw — {wz(T)v le L, reR}eRl,, as follows. A w,’ = Q,’(t). (See [13] and [2] for more general weight

{ log M]* if and only if there exists a uni orunctions.)
vectoru < [log .]. irand only 1l Inere exists a unique S‘p 9 Under the QBRA algorithm, nodes also dynamically choose
scaling by a positive constant) link weights vectore R

. . . access probabilitiep according to (5), with the weighbj(.")
such thatu is the unique solution of the problem of flow r on link I(r, j) at timet being set to the curremjueue

max w-u Stu€logM, differential w("” = AQ'"(#), defined as follows:

and its Pareto (“north-east”) boundary as

or an equivalent problemax w - logwv s.t.v € M. (Thus, () ) + .

the vectorw is the unique outer normal vector to the regionAQ(.")(t) = [Q-f (6) = Q)] 1 =<j<ILl,
log M at the boundary poini.) Moreover, the unique set of QI(Z) ‘(t), j=1L|.

access probabilitiep such thatu = log (p) is given by

(6)

") As usual, we identif;AQgT) andAQl((Tr) ;) and denote bAQ
(r) _ wy

p= 0 (5) the vector of allAQ!" in the network.

Ziesn Zk:ieﬁk w,; Obviously, under QBRA a transmission of a flowpacket
wheren = t, is the transmitter node of link Different vectors at timet on link (r, j) will not be attempted unIes@E”(t) -
u € [log M]* have different corresponding weights vectars Qg-l)l(t) > 0. This clearly implies that if inequality
this implies, in particular, that regidng M is strictly convex. ) o

We will denote byp(w) the function given by (5), and Q; (1) = Q1 (1) — 1, (7

for future reference adopt the convention thgt’ = 0 when holds for flowr on link I(r,j) at timet = 0, it then holds for
wl(r) = 0. This makegp(w) well defined for allw € R%, and all ¢. In all cases considered throughout this paper, (7) in fact
not just forw € RY becausaul(r) > 0 guarantees that the holds for all flows and links at timé and then for all:.
denominator in (5) is positive as well. The important featur
of expression (5) is that the denominator is essentially the V. UTILITY BASED END-TO-END THROUGHPUT
sum of the weights of all links with which the transmitting ALLOCATION
node n interferes including the link originating at itself,
and so nodes can compute their access probabilities vey
efficiently, using limited information exchange within the
local neighborhoods (see [13] and [2] for more details).

In this section we study the scenario in which the sources of
Ydata flows are “saturated”, i.e. they have infinite ameunt
of data to send. Informally, the problem is to allocate thylou
puts z(") to flows r along their respective routes in the
] ] network by setting access probabilities of all nodes in a way
C. Queueing Dynamics that maximizes theveighted proportional fairnessbjective
The generic queuing dynamics in the random access ngt- 6(") log ("), whered™) > 0 are fixed weights.
work described above are as follows. Here we do not discussThis problem was considered in [15], where two dis-
here how new packets arrive in the networks and how accesbuted iterative algorithms for setting access probitéd
probabilities are set, which will be specified later. L&t) (t) were proposed and proved to be optimal; these approaches
denote the number of exogenous data packet arrivals at #ml results were generalized in [5]. However, the solution
source node(r,1) of flow = in time slot ¢, and Qg.")(t), approaches in [15] and [5], based on the dual and the pri-
j=1,...,|L.|, be the queue length of typepackets at the mal algorithms in convex optimization, both need end-td-en



feedback information to update variables maintained by tleeoose any dominating point and then move it slightly within
nodes. This may induce increased delays due to the enddto-#re boundary so it strictly dominates.) This implies thay an
signaling along the route, especially in large-scale netaio optimal solutionu* to (9) must lie on the boundaflog M]*.
Moreover, the deterministic optimization-based alganighof Otherwise, we could move this point within the interior of
[15] and [5] are oblivious to the actual queueing dynamidsg M in a direction that improves the value of the objective,
in the network, which also may degrade performance metrieghile respecting the constraints. Moreover, since theoregi
including delays. log M is strictly convex by Proposition 1, the optimal solution
The purpose of this section is to prove that the abowg" to (9) is unique. (Non-uniqueness would imply that we
problem can be solved by the QBRA algorithm as well. Theould choose two optimal solutiona,;»! andu*2; then, the
solution is very simple. Each flow source maintains a con-middle pointu* = (u*! + «*?2)/2 has same objective value,
stant queue Iengt@g’”), proportional to9("), at the flow source but cannot be optimal, since it is in the interior.) Thensuch
node. Then, as we show, the dynamics of the network quetleatu* = log v* is the unique solution of (8). Further, again by
under QBRA are such that the queue lengths “converge” Rsoposition 1, the unique (up to scaling) outer normal vecto
the values that induce access probabilities resulting & tto the smooth boundarfjog M]* at pointu* has all positive
optimal end-to-end throughput allocation. Since QBRA usesmponents. This implies that the optimal link throughputs
only local message passing between “neighboring” nodes, alocated to each flow along its route are all equal:
can say that QBRA provides a “more distributed” solution to (r)« (r)«
the problem than those in [15]. upt ==t TER. (10)
The solution provided by QBRA isisymptotically opti- Otherwise, we could improve the objective by slightly “mov-
mal in the following sense. Queues at the source nodes @tg” w* within the boundarylog M]*.
maintained equal t@(") /n, wheren > 0 is a small scaling  Now, consider the Lagrangian for the problem (9):
parameter. This means that, roughly speaking, the paramete ]
n “scales up” all queues in the network by a large fadton. ”(r g . ”
The optimality is achieved when becomes infinitesin?ZIIy L{g,u) = Z 2 )ug - an( : (“gjl - U; )) , (11)
small. Consequently, our results concdlmd limits of the TR i=2
gueue length process, which are the limits of the processrund =Aq-u, (12)
nQ(t/n) space and time scaling, gs| 0.
Finally, in this section we show that QBRA also solves
more general problem, with additional, minimum end-to-e
throughput requirements,”) > \("), qu(r) _ {qy) —¢\" 1< <L,

here, by conventiony is such thag\” = 6 for all r, and
n\%q is the vector with components

no o (13)
qfﬂi‘, J =L

A. Problem Formulation

. Then, for any optimal dual solutiog*, we must have
The problem is to operate our random access network In yop oe

a way such that the averagend-to-endflow throughputs u* =arg max Aq*-wu, (14)
L . guelo M

2" maximize 3" 0 logz(™), where §") > 0 are fixed _ e N _

parameters, while keeping all the queues in the networkestatfrom which we conclude the following additional facts. FEjrs

This in particular means (tf;at we want the valuesz6? to Ag* = 0, that is

be those given (as'”) = v\"’) by a solution of the following (1) — () ()%

N : 0 e 0 R 15
optimization problem for the average link-flow throughputs & e 2, > TER (15)
Z 00 1o ™) because if at least one of the component\gf* would be

Og vl 9

,I,IéaMX negative or zero, no point of log M could be an optimizer in
. oy ) (14). (Because\g* - u could always be increased by a small
subjectto  wv; ', <w;’, o i ) .
g—1 J change ofu within log M.) Second, again using Proposition 1,
J=2,...,]L:], r€R. (8)

Ag* is an outer normal tflog M]* atw*. From here, finally,

Here again we use notational conventi n = vl(TT)_ .,andwe We conclude thaf[ the optimal dual solutigh i§ .uniquej, and it
any optimal solution to (8) must be such that- 0, problem Produces the optimal rates’ (_n_amerl)y,v = n(p(Ag™))),
(8) can be equivalently written in terms of log-throughput@nd satisfying additional conditiond™ = ¢") for all 7.
u = logwv:
N\ B. Application of QBRA Algorithm
max Z 9(’)ulr , . .
u€log M = QBRA can be applied to solve problem (8) as follows. First
Te(r) <™ we fix a small parametey > 0. Each flowr source maintains
-1 ="0 a constant queue length{” = [ /5], at the flow source
j=2,...,1L], T€R. 9 . X .
node, wherdg - | denotes the integer part of its argument. It is
Note that, given smoothness of the boundfog M]* (see always feasible to provide this condition because the sourc
Proposition 1), any interior points of log M is strictly has an infinite amount of data, and it can simply add a new
dominated by some boundary poiat € [log M]*. (We can packet in the queue after each successful transmissionifrom

subject to



Otherwise, the QBRA in the network works exactly as defined Theorem 1:Every FSP is such thaj(t) — ¢* ast — oo
earlier. and, consequently(t) — v*. The convergence is uniform on
Without loss of generality, we can assume that at tirae0,  all FSPs.
the relationships (7) hold (for example, all queue lengths o Theorem 1 basically says that, when the parameter 0
each route aré, except for that of the first queue), and so (7is small, then regardless of the initial state of the quethes,
holds for all¢. gueues “converge to” and stay close to the values that result
We consider théluid limit asymptotic regime. Namely, we via the QBRA rule for access probability assignment in the
look at a sequence of systems, with paramgtei. For each optimal end-to-end throughput allocation. The key ideahef t
system we consider the space-time rescaled queueing pro¢geeof of Theorem 1 is contained in the following Lemma 1,
nQ(t/n) in continuous timet > 0, and then consider the which states that essentially the Lagrangian (11) of the@on
process-level limit of those, ag | 0. The following fact, optimization problem (9) can serve as a Lyapunov function to
proved essentially the same way as the analogous resultpiove the convergences and we will discuss the technicaside
[13], roughly speaking says that any limiting process is-cobelow.
centrated on the family of continuous trajectorigs), ¢ > 0, Lemma 1:For any FSP at any timesuch thatg(t) € D\
calledfluid sample pathsand describes their basic propertiesHD, the following holds. The value of(t), and thenu(t) =
We omit the proof here - it follows essentially from the samiyg v(t), is defined by (17) uniquely, and moreover
argument as that used for the analogous result in [13].
Proposition 2 (Fluid Limit): The sequence of rescaled pro- u(t) = arg maxyciop MAG(L) - 4
cessesnQ(t/n), t > 0, can be constructed on a commomandu(t) € [log M]*. Consequently(q(t), u(t)) is a smooth
probability space in a way such that, with probability function of time in a neighborhood of by (12) L(q(t), u(t))
the sequence of realizations has a subsequence converginge value of the convex dual problem to (9) at pajft),
uniformly on compact sets to a Lipschitz continuous traject and
q(t), t >0, called thefluid sample pati{FSP). The family of Z 0 Ul < L(q(t), u(t)) < 0; (18)
FSPs satisfies, in particular, the following properties. &ach reRr

" function L(qg, u) is smooth in a neighborhood ¢§(¢), u(t)),

00 =¢")> ¢ t)>...>¢" (1) >0; (16) and has zero partial gradient on primal variables at

[Lr] .
, (q(t),u(t)):
and for eachr and1 < j < ||, VuL(q(t), u(t)) =0. (19)
d A1) = i (1) — Y) (1), qj(” Finally,
at’ i, () = o @) ) o, ettt 20
wherew(t) is such that dt -
v(t) € argmax, ., Aq(t) - log z, a7n =- Z Z (U;C)l (t) — vy)(t)) (ugi)l(t) —ug-r)(t)) <0,
with the vector of queue differentialdg(t) = 0 defined re€R §=2 21)

analogously to (13).
Note that the ordering property (16) is the limiting versio@nd the inequality is strict unlesgt) = q*.
of (7), and that the key property (17) follows from the facitth Proof: If q(t) € D\ 9D, then, by Proposition 1, in the
QBRA uses queue differentials as link weights to set accesighborhood of this point the dependencewdf) on g(t)
probabilities via (5). is given by the explicit smooth function(p(q)). Obviously,
We denote byD the set of all possible FSP statg¢t), the dependence = logv is smooth as well. Then, all the
i.e. those satisfying inequalities (16), and &% the subset of properties described in the lemma clearly follow, using in

thoseg € D with at least one zero componeﬁ'ql(r) —0. particular the smoothness of the boundhﬁg /\/l]*. Inequality
(21) holds because each dlf'feremﬁé> T)( t) obviously
has the same sign as the correspondmg dlﬁermﬁﬁ)@(t) —
C. Asymptotic Optimality u{"”(t); all such differences cannot be simultaneously equal to
Given the properties of optimal primal and dual solutions 9 'unlessq() = g*, because otherwise a stationary trajectory
problem (9),u* and g*, respectively, it follows immediately “Sitting” at a point different fromg™ would exist. =

that the stationary trajectory(t) = ¢* satisfies all the FSP  In addition to the key Lemma 1, we need some auxiliary
properties described in Proposition 2. Moreover, analstyou results to prove Theorem 1.

to the way it is done in [2] for a simpler model, it is easy Lemma 2:For any FSP and any time > 0, there exists
to see that any stationary trajectog(t) = ¢** ¢ 9D, an arbitrarily close ta time s > ¢, such thatAq(s) > 0, i.e.
satisfying FSP properties in Proposition 2, must be sugts) € D\ dD.

that ¢** = q*, because theny** satisfies Karush-Kuhn- Proof: Let us call any link-route paif, r) such thatl ¢
Tucker (KKT) conditions for problem (9). This to some degreg,., a virtual link. For a given FSP, let us call,r) a “zero”
motivates the following main result of this section. (resp. “non-zero”) virtual link at time if qu(r) =0 (resp.



> 0). Suppose there are some zero virtual links at time In particular, this means that the uniform bound (18) holds.
If not, then the lemma statement is trivial. Since trajegtofThus, to prove the uniform convergengg) — ¢* it remains
q(*) is continuous, to prove the statement of the lemma it wilb show that the negative derivativeL(q(t), u(t)), given by
suffice to show that there exists a time> t, arbitrarily close (20), is bounded away from zero as longg$) is outside of

to ¢, such that at least one virtual link which was zerot at an e-neighborhood ofy*. This is obvious if values of(t) are
becomes non-zero at Indeed, this implies that we can “reset’confined to a compact set, not intersecting with. To show

t to s, show that yet another link becomes non-zero at a tintieat it is still the case within the entire sBt\ 0D, it remains to
arbitrarily close tos, and so on, until all links are non-zero.observe the following. If poing approaches an arbitrary point
Consider two cases. a € 9D, the derivative%L at g approaches-co, because for
Case (a): Suppose that on one of the routethere is a non- at least one virtual link, the correspondimvéﬁ1 (see (20))
zero virtual link followed by a zero one; thatisq”, () > 0 approache$ while v") does not, or vice versa. Here, again,
anquY) (t) = 0. This is the situation in which a transmissionye essentially repeat the argument used for Lemnill 2.

on the j-th link “kills” a simultaneous transmission on the

j—1-thlink. Then, itis clearly seen from (17) th@@ (t) =0,

vj@l (t) > 0, and both these functions are continuous in time

at t. Then, by (17),q§r) has positive, bounded away from _ _ _

0, derivative in the intervalt, ¢ + €), with smalle > 0. In D. Discussion: Key Features of FSP Dynamics under QBRA
the same time interval, also by (17), the derivative;ﬁf1 is

upper bounded by an arbitrarily small> 0, if we choose At this point we would like to highlight key features of
sufficiently smalle > 0. If j = [£,|, then (Jﬁ)l(t) = 0 by FSP behavior under QBRA, which make it distinct from the
convention. These facts mean tmiqy)(s) > 0 for all s € behavior of FSPs under “conventional” back-pressure based
(t,t +¢). We are done with case (a). algorithms in multi-hop networks. Consider inclusion (17)
Case (b) = [NOT Case (a)]: At timg along each route, Wwhich determines the instantaneous service rates (in the
there is a (possibly empty) sequence of zero virtual linkkat fluid limit). First, under QBRAw(t) is “chosen” within the
beginning, followed by the (definitely non-empty) sequeote saturation throughput regiaf!, as opposed to the maximum
non-zero virtual links until the end of the route. In this €as possible throughput region. Second, and this is key) is
there is at least one zero virtual link, let it be tjh link on chosen so thatAg(t) - logwv(t) is maximized, as opposed
router, such that it either shares a link with a non-zero virtudd maximizingAgq(t) - v(t) under conventional back-pressure
link, or it interferes with transmissions on a non-zerouwdit algorithms. Both features are already present in paper [13]
link. Here the latter observation uses strong connectigfty concerned, in particular, with queueing stability of theapl,
the link dependence graph. Either Wazy')(t) =0 and it is single-hopversion of QBRA; and as shown in [13] these
continuous at time. For the first non-zero virtual link on this features do not “prevent” the use of standard “sum-of-queue
route, say then-th with m > 5, v'%(¢) > 0 and is continuous Squares’-type Lyapunov functions (up to some adjustments)
att. Then, using (17) we clearly see that, in a small intervid establish stability. However, for theulti-hop version of

(t,t+e€), QBRA considered in this paper, the second featuog A
d instead ofz in the right-hand side (RHS) of (17)) makes
E[qﬁl(s) + ... +¢M(s)] < —=C, sum-of-queue-squares type Lyapunov functions inapgkcab

_ _ _ for queueing stability proofs (at least, we did not find a way
for (src))meC’ > 0 independent of; and in the.same interval {5 yse them), which in fact was the starting point of our work.
#a;"(s) > —0, wheres > 0 can be made arbitrarily small by This prompted us to take a broader view which includes both
choosing smalk. We conclude that for any € (¢,¢ +€), we ytility maximization problems of this section and (as welwil
must have;\” (s) > ¢\ (s) for at least ong’, j+1 < j' <m, see in Section VI) the queueing stability problem, within a
and therefore one of the virtual links from tjieh to them—1-  unified framework. This led us to consider the Lagrangian-
th must be non-zero at time B  type Lyapunov function used in the proof of Theorem 1,
Lemma 3:For any FSPAg(t) > 0 for all ¢ > 0. which (as the proof shows) can be used to establish FSP
Proof: In view of Lemma 2, it suffices to show that if convergence, despite the second feature of FSP dynamics.
Agq(t) > 0 for t = s > 0, then this holds for alt > s as (This Lyapunov function does, however, rely on the conyexit
well. Suppose not, and, s < 7 < oo, is the first time aftes  of the log-throughputregion log M.) The generalization of
when g(t) hits setdD. This means that there exists a subsehe utility maximization result, which we present next, is
of virtual links which simultaneously become zero at time poth important in its own right and (as shown in Section VI)
However, considering the valuesm)J(f' (t) for ¢ close tor, and allows the queueing stability result to “fall out” as essaiht a
essentially repeating the argument in the proof of Lemma @rollary. The use of Lagrangian-type Lyapunov functioms f
we can show that for at least one of those Iimkgﬁ”(t) must queueing stability problems of back-pressure type algors,
in fact be increasing for such and therefore cannot hitat i.e. treating such problems essentially as special casasiof
7 - a contradiction to our assumption. B maximization, is novel and (as we show) it works in cases
Proof of Theorem 1According to Lemma 2, for any FSPwhen the traditional approach does not — this is one of the
at any timet > 0, we are in the conditions of Lemma 1.main technical contributions of this paper.



E. Generalization: Systems with Minimum Flow Rate Require; which is a limit of Y (¢/n), and it satisfies condition

ments T .
Ly = {Am —07(0), ¢ >0,

y WM )
In practical systems, a minimum rate lower bound is often di A - v @1, i =0

required on the end-to-end throughput to guarantee Qualiiﬁyaddition to (17). If we denote, by conventiomlf)(t) _

of Service of the data transfers. Accordingly, Theorem 1 cap) 4" (1), then the key condition (17) determining(t
be generalized to include such additional constraints.el\/log,[iII holds '

precisely, suppose that the end-to-end throughput aédciat
each flowr needs to be at leasf”) > 0. Formally, the more
general optimization problem which we will write directly i
terms of log-throughputs = logv as in (9)), is

The generalization of Theorem 1 is the following.

Theorem 2:Assume the feasibility condition. Then, uni-
formly on all FSPs with initial stateg(0) within an arbitrary
fixed compact setg(t) — q* ast — oo and, consequently,

max Z 9(7‘)ugr)’ v(t) — v*.
uclog M reR Theorem 2 both generalizes and significantly strengthens a
subject to uE’jl < u§.’“), result of [2], which applies to QBRA in a system with one-hop
J=2,..,]L:], 7 €R, routes and states only thdtconvergencey(t) — ¢** holds
log A" <u{”, reR. (22) theng™ =gq".
] ] Proof of Theorem 2 is carried out analogously to that of
We will assume the following Theorem 1. We do not provide details here, but rather just

Feasibility condition: Problem (22) is feasible, and more-the following key points. The Lagrangian in this case, which
over all its inequality constraints can be satisfied as striserves as a Lyapunov function in the proof, is
inequalities.

12|
This condition can be interpreted as follows. Let us denoteL(q,u) = > 60Mu{” - 3" Y "¢l (ug’”_)l - ugr))
Ao = (A" e L, r e RY, (23) A
—Zyr (log)\r —uy )
where A" — \(") . Obviously, A" is the vector of mini- reR
mum rates each flows needs to receive on each link, in order = Aq-u-— Z y(r) log /\(T), (25)
for the end-to-end rates to be at least). The superscripto rer

stands fomominalminimum link loads. Then, using propertieswhere by convention, for those flowswith A(") = 0, we

of the regionM, it is easy to verify that the feasiblity conditionhavey(r) = 0 andy " log \(") = 0. For each FSP, the bounds
is equivalent to the following one. (18) generalize as ' ’

Feasibility condition (an equivalent form): Vector A" is
strictly inside regionM, in the sense thak™° < v’ for some Z 9<T>u§”* < L(q(t),u(t))
v’ € M. In other words, the saturation throughput region rer
M is large enough to provide each flowwith a rate strictly < L(q(0),u(0)) < — Z ¥ (0)log A7), (26)

greater tham\(") on all its links. g

Now, given the feasibility condition, there exists a uniquas in the proof of Theorem 1, an important intermediate step i
optimal solutionw* such that (10) holds, and the optimakhowing thatAg(t) > 0 forall t > 0 - this is done analogously
dual solutiony ()~ QY)*, Jj=2,...,|L, 7 € R, where to the arguments in Lemmas 2 and 3.

y(")* are the duals corresponding to the minimum throughput

constraints. The generalized version of (15) is: V], STOCHASTIC STABILITY OF A NETWORK WITH

QY)* =90 4y > qgr)* S>> q‘(z)j >0, r€R, (24) EXOGENOUSARRIVALS

We now turn to another version of our model, where flow
sources dmot have an infinite supply of data to send, but

) . . i rather there is a random process of exogenous arrivals to the
To apply QBRA in this case we use a virtual quexie),

. (r) . ..
o irst queu at the flow source node. For simplicity let us
maintained by each flow source node. “Tokens” are adde queue, plcty

v h 2™ (tokens/slof): cen is SSSUme that each such arrival proce® (t), t = 1,2, ...
to at the average rata”) (tokens/slot); one token iSjq i 4 with the average rata™) = E[A™)(1)] > 0, and

removed from it if there are any in every slot when a packgﬁl arrival processes are independent. The independent and

of flow r is SUCCGSSf.u”y trz_;msmltted from the source node. A|3entically distributed (i.i.d.) and independence asstioms
opposed to the previous situation, the source node usebhaot

) " dan be greatly relaxed. Also, it is not an accident that hexe w
constantvalugd'™ /n| as the queue lengl; ", butrather the ,qe the same symbol™) for the input rate as we use used

i r) T r i L . . )
yarlabIng () = 107 /n] + Y (t). Otherwise, the QBRA for the minimum rate bound in Section V-E; the reason will
in the network works exactly the same way as defined earliggcome clear shortly.
in Section IV. Consider such a network under the QBRA random access

An FSP now contains additional componefit (¢) for each scheme. The question is under which conditions the queueing

Ag* = 0 is defined as in (13), and, againy* =
arg MaXyclog M AQ* - U.



Flow 1 Flow 2

processQ(t), t = 0,1,2,..., in the network is stable. If we
assume (for further simplicity) tha®{A)(t) = 0} > 0 for
eachr, then it is clear thafQ(¢) is a countable state space,
irreducible, aperiodic Markov chain. By stability we meas i
ergodicity.

Note that, without loss of generality we can assume that
the “queueing order” relations (7) hold along each routdlat a 1
times. i

The main result of this section is the following o @

Theorem 3:Suppose input rated”) > 0, r € R, satisfy Flow 3
the feasibility condition given in Section V-E. Then the ﬂetF
work queueing process is stable.

This theorem generalizes to the multi-hop setting one of
the stability results i_n [13],_which apply to the s_,ingle—ho;fx_sp we have the bounds
system. We emphasize again that our proof, outlined below,

ig. 1. A 6-node ad-hoc network

is substantially different from that in [13], even thoughttbo 0 < L(q(t),u(t) < — Z ¢ (0)log A, (28)
use fluid limits. (See the discussion in Section V-D.) Note reR
that, in the setting of this section, the feasibility comit |5 particular, if ||g(0)]] = 1, then L(q(t),u(t)) <

in its equivalent form (see Section V-E) has a simple andz log A\(™.

intuitive meaning: the saturation throughput region iggéar  ysing arguments analogous to those in Lemmas 2 and 3, we
enough to support the nominal loadg' imposed on the can show that for alt > 0 a subset of components dfq(t)
individual network links by the traffic flows. cannot hit0, unless all components hitsimultaneously; this

We will use thefluid limit techniqueto establish Theorem 3 jmplies thatAq(t) = 0 for all 0 < ¢ < ¢/, wheret’ is the first,
(see [13] for an application of the technique to a randompssibly finite time whem\g(t) = 0, and theng(t) = 0. For
access system, and references therein to a general theqfl)y < + < +/, we have, analogously to (20),
With this technique, we look at the fluid limit, defined analo-
gously to the way described in Section V-B. It is important to — L(q(t), u(t))
emphasize that the QBRA algorithm in the network does dt

use parametey in any way. This is true for the use of QBRA = — Y (/\(T) — " (t)) (log Al — Ugr)(t))

in Section V as well, but there traffic sources use the pammet r€R

n to decide when to send new packets. In this section, the [£r] ‘

parameten is used only to define the fluid limit asymptotic -3 (v§91 (t) — ”.Y) (t)) (u§’”_>1(t) - ug»r)(t)) (29)
regime. rER j=2

In our case, the FSPs turn out to satisfy the same propertigsxt, we prove that the RHS of (29) not only is non-positive,
as those for the FSPs in Section V-E, but specialized t0 1@t in fact is bounded away fromby a negative constane,
casef!”) = 0 for all r. This is not merely coincidental - it uniformly on all possibles € [log M]*. Indeed, there exists a

is easy to observe that if in Section V-E we were to assunggfficiently smalld > 0 such that, for any. € [log M]*, we
that all9(") = 0, then the behavior of each virtual que€’) have

there would be analogous to the behavior of actual ql@iﬂé A — vY)| ~§ or |’U§»T_)1 _ UJ(T>| ) (30)
in the setting of this section.

Then, according to fluid limit technique, to prove Theorem ' at least one of the terms in the RHS of (29). Otherwise
it suffices to prove the following A e [log M]*, which contradicts the feasibility condition.

Theorem 4:There exists’ > 0 such that, uniformly on all For the term that corresponds to the latter form in (30):

FSPs with||q(0)|| = 1, we haveq(t) =0 for all ¢ > T. ” ” . - . ) 2

Proof. 'IUr?é )[l‘rOOf is, agaisf](a)nalogous to the proof of (vﬁl N U§ )) (uﬁl - u§ )) = (Uﬁl - UJ(' )) > 0% (31)
the convergence resuIFs in Theorems 1 anq 2. We omit fylbre we used the fact thét/dz) log » > 1 whenz € (0, 1).
details, but the key points are as follows. Sincedéll = 0, Thus, L(g(t), u(t)), and thenq(), must hit0 within a
and consequently(")(t) = ¢{" (¢), the Lagrangian in (25) uniformly bounded time. The fact thaf(t) cannot leave)

specializes to after first hitting it clearly followsH
[L+]
Ligu) = =Y > q" (ugi)l - u;-r)) VII. NUMERICAL EXAMPLE

TeRij) " ® In this section we investigate performance of QBRA via
- th (10g/\ — U ) simulations. We consider a simple 6-node, 3-route ad hoc
reER ") ") network as shown in Figure 1, which has the same network

= Aq-u-— Z q - log A (27) topology as the second example in [15]. The nodes are labelle
reR from 1 to 6, and the interference model is such that each node

This Lagrangian is used as Lyapunov function, and for eaatterferes with the reception at its one-hop neighbor nades



TABLE |
THE END-TO-END THROUGHPUTv(™) OF EACH ROUTE IN TWO CASES 1
WITH/WITHOUT MINIMUM RATE REQUIREMENTS

Thru »@ v(2) v®3) osf y\
Case 1| 0.05196| 0.12258| 0.08770 o7 Qs
Case 2| 0.09934| 0.07392| 0.04957 :

Queue Length

the network graph. Therefore, we have nQ

Dy = {2}37)2 = {133}7D3 = {234}7 o r" e e P s

oS O I T oy
D4 = ®aD5 = {3}7D6 = {3a 5}7 o ﬂ}{m/"“&/ ’
N o= {1,2},No = {1,2,3}, N3 = {2,3,4,5,6}, R
N4 = {354}7N5 = {35 576}5N6 = {37576}7

and the setsS,, defined accordingly. Links are identified by
the pair(r, j), so that, for exampleQél) is the queue length
of flow 1 at the second link (from node 5 to node 3) on its
route.

We apply QBRA to solve both the optimal end-to-end flow
throughput allocation problem of Section V, and to provide
stability of the queues in the case of exogenous arrivals
(Section VI). We compare the performance of QBRA with
that of deterministic optimization based algorithms refdrto
as OPTs, such as that in [15]. al | \f\,hjw‘l,’,‘w o WETEY:

We would like to emphasize that, even when QBRA and . w}W&‘Wﬁw‘ﬂ‘”ﬁW@N Wi “‘MW'WWH M“ﬂ‘}mﬁ"\ﬂ N
OPTs are applied to solve the same problem, such as (9), s {
there are significant differences between them: QBRA update S -
network variables based on queue-lengths, while OPTs are
oblivious of the actual queues; QBRA can be implemented by
nodes exchanging queueing information within local neigh- :
borhoods, while OPTs require end-to-end message passing
along each flow route. When we talk about providing queueing
stability in a system with exogenous arrivals, the diffeeis
even more pronounced: OPTs would require estimation of the
flow input rates to be used in the appropriate optimization
problem to calculate link access probabilities resultimg i
sufficient link throughputs along each route; QBRA does not
need to know or estimate input rates and ensures stability
“automatically” when feasible.

(a). with scaling factom = 0.002.
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Queue Length
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(b). with scaling factom = 0.01.

n®  nQd®  nQ

Queue Length

A. End-to-end Throughput Allocation

Here we run QBRA to solve the problem (22) with weights
o) = 92 = 9B) = 1, in two cases. Case 1 is without (c). with scaling factom = 0.05.
minimum rate constraints; Case 2 is with minimum ratgyg. 2. Behavior of flow 1 queues, under different scalingdag;.
constraint A() = 0.1 for flow 1, and none for the other
two flows. The resulting end-to-end throughputs after gaeue

“‘converge” are given in Table |. These throughputs are thgotation marks, because for any pre-limit system, withéini
same as those produced by OPT as expected, since the probjefere cannot be a convergence in the deterministic sense -
being solved by the two algorithms here is same. the queueing processes remain random. We can also see, again
For both Cases 1 and 2, we run the algorithm with threg predicted by Theorems 1 and 2, that the “convergence” time
different values of the scaling parameter namely,0.002,  of the QBRA algorithm is roughly proportional tb/r. This
0.01 and 0.05, to demonstrate how the dynamics of queugs trye, however, as long asremains sufficiently small; if
depends on this parameter. Figures 2 and 3 show the dynamicgoo |arge” as isy = 0.05 on Figures 2(c) and 3(c), the
of the queues of flow 1 along its route. As predicted by th&,ctuations of the scaled queue IengW@T aroundqgr)*,
asymptotlc(lresults in Theorems 1 and 2, the scaled queign after the queues “converge”, will be too large, and the
lengths Q" “converge” and “stabilize” around the corre-accuracy of the algorithm will suffer. Therefore, the vahfe
sponding valueaﬁl)*. Here “stabilize” and “converge” are in parametern has to be chosen carefully to achieve a balanced
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Fig. 4. Comparison of the QBRA scheme and the optimizataseld scheme
on queueing performance(!) = X\(2) = \(),

Queue Length

o follows: we a priori “pre-calculate” link access probatids

! P | so that the resulting end-to-end rate§) provided to the

time flows are maximal, subject to() = 22 = £ In other
(©). with scaling factom = 0.05. words, we pretend that an optimization based algorithmns ru

Fig. 3. Behavior of flow 1 queues, under different scalingtdag), with a p_rl_on to calculate appropriate access probabilitiesT @
minimum rate requirementa = (0.1, 0, 0). oblivious to the queue lengths, except that, when there @are n

packets at a link, the link doesot attempt transmission. We

study the total average queue length of each flowvhich
tradeoff between oscillation around stationary regime twed by Little’s law is proportional to the end-to-end queueing
time to converge. Namely, it should be chosen “as large gglay: Q") = ) Qz(T)- Figure 4 compare£)®), Q® and

possible, but not larger.” Q® under the QBRA and OPT. It shows that the average
gueues under QBRA are significantly lower than those under
B. System with Exogenous Arrivals OPT. An intuitive explanation of this is that QBRA “better

Here we simulate the system with exogenous (i.i.d. Poissgjapts” to the current queue length in the network.
arrivals with equal rates for all flows\(V) = X\ = X&),
and we scale the rates up to observe the changes of the VIII. CONCLUSION AND FUTURE WORK
queue lengths. The QBRA works exactly as specified inIn this paper we have considered a class of queue back-
Section VI. An OPT algorithm that we simulate works apressure random access (QBRA) algorithms within a model of



wireless networks with multi-hop flow routes, where the attu[13]
gueue lengths of the flows in each node’s close neighborhood
are used to determine the nodes’ channel access protmbilil%lﬂ']
We have investigated the properties and performance of the
QBRA scheme under two different traffic models.

For the model with infinite backlog at each flow sourcé,l‘c’]
we have shown that QBRA, combined with simple congestion
control local to each source, leads to the optimal solutidf!
of a utility-based end-to-end throughput allocation, th
the networksaturation throughput regiomchievable by ran-
dom access. The implementation of this scheme needs no

end-to-end message passing as in contrast to existing pure

optimization-based algorithms. We have further genegdliz
this local QBRA scheme to the case of additional, minimum
flow rate constraints. On the other hand, for the model with
stochastic exogenous arrivals, we have shown that QBRA
ensures stochastic stability of the queueing process asdsn
nominal loads of the nodes are within the saturation thrpugh
region.

One subject of interest for future work is a study of the
gueueing stability of random access schemes in the model of
multihop transmissions with link weights being defined more
generally than queue differentials. Meanwhile, anothgicto
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