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Queue Back-Pressure Random Access in Multi-Hop Wireless
Networks: Optimality and Stability

Jiaping Liu†, Alexander L. Stolyar‡, Mung Chiang† and H. Vincent Poor†

Abstract—A model for wireless networks with slotted-Aloha-
type random access and with multi-hop flow routes is considered.
The goal is to devise distributed algorithms for utility-optimal
end-to-end throughput allocation and queueing stability.A class
of queue back-pressure random access algorithms (QBRAs), in
which actual queue lengths of the flows in each node’s close
neighborhood are used to determine the nodes’ channel access
probabilities, is studied. This is in contrast to some previously
proposed algorithms, which are based on deterministic optimiza-
tion formulations and are oblivious to actual queues. QBRA is
also substantially different from the well studied “MaxWeight”
type scheduling algorithms, even though both use the concept of
back-pressure.

For the model with infinite backlog at each flow source, it is
shown that QBRA, combined with simple congestion control local
to each source, leads to optimal end-to-end throughput allocation
within the network saturation throughput region achievable by
random access, without end-to-end message passing. This scheme
is generalized to the case with minimum flow rate constraints.
For the model with stochastic exogenous arrivals, it is shown
that QBRA ensures stability of the queues as long as nominal
loads of the nodes are within the saturation throughput region.
Simulation comparison of QBRA and the queue oblivious random
access algorithms, shows that QBRA reduces end-to-end delays.

Index Terms

Aloha, Random Access, Distributed Algorithm, Queue Back-
Pressure, Stability, Throughput Region.

I. I NTRODUCTION

In wireless ad hoc networks, contention resolution and
interference management among links are among the most im-
portant issues, which motivates the extensive study of wireless
medium access control (MAC) protocols. The standard MAC
protocol currently used in IEEE 802.11 [3] is the Distributed
Coordination Function (DCF) with Binary Exponential Back-
off (BEB) mechanism. However, it has been concluded by
many researchers that DCF with BEB mechanism for con-
tention control can be inefficient and unfair, eg. [11]. Thus,
there are significant challenges in designing MAC protocols
that are both efficient in terms of throughput, latency, energy
consumption, etc., and allow distributed implementation min-
imizing signalling or message passing overhead.

It has been shown that the maximum throughput region can
be achieved by much studied “MaxWeight”-type scheduling
algorithms as originally proposed in [14]. However, in the
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context of wireless networks, MaxWeight algorithms typically
need to be centralized for implementation. Some recent works
(e.g. see [8], [12] and the references therein) propose dis-
tributed solutions of the MaxWeight algorithm, but such im-
plementations also require heavy signaling procedures whose
complexity relies on the size of the network. The impact of
central coordination, and excessive signalling overhead on the
overall performance has not been quantified, or extensively
studied, and yet remains unclear. Another class of wire-
less scheduling schemes, known as random access (“slotted-
Aloha-type”) algorithms, typically provide smaller throughput
regions, but are simpler and more amenable to distributed
implementations. In this paper we consider a model of random
access for multi-hop transmissions.

Random access models have been widely adopted in con-
temporary works, such as [1], [2], [4]–[7], [9], [10], [13],
[15] and [16]. Informally, we can classify them into two
categories: “pure optimization-based” algorithms (e.g. [5], [6],
[10], [15] and [9]) and dynamic, queue-length based strategies
(e.g. [2], [7], [13] and [4]). Algorithms of the former type
solve an optimization problem that allocates network resources
(e.g. effective link throughputs) to satisfy and/or optimize
traffic demands of different flows; they require optimization
parameters to be specified a priori and are typically oblivious
to the dynamics of actual queues in the network. Moreover,
the iterative algorithms in [5], [15] and [6] involve end-to-end
message passing within the network; the revised algorithms
proposed in [10] and [9] reduce the signaling to a cluster of
interfering nodes but the convergence and optimality have been
shown only in a single-hop transmission model. The latter
type algorithms, including the Queue-length based Random
Access (QRA) algorithm in [2] and [13], and the constant-time
distributed scheduling policy which coincides with a certain
type of QRA in particular systems in [7] and [4], are operated
by adaptively responding to actual queueing dynamics and
thus guarantee queueing stability of the system. In particular,
for the class of QRA algorithms, even though in some cases
they appear to have the same optimization objective as the
former optimization-based algorithms, they do not need a
priori knowledge of traffic flow input rates to achieve queueing
stability if such is feasible. It worth noting that the previous
studies of dynamic random access in the latter type ( [2], [7],
[13] and [4]) all assume a traffic flow model with single-hop
transmission without multi-hop routes.

In this paper we propose and study a class ofqueue
back-pressure random access(QBRA) algorithms for a multi-
hop network, and generally with multi-hop end-to-end flows.
The algorithms use flow queue differentials on the links
to determine link access probabilities, while the MaxWeight
algorithms use queue differentials as well, but in a completely
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different way. Our main contributions are as follows.
(i) For the problem of utility-optimal end-to-end throughput

allocation in the model of saturated sources, as consideredin
Section V, we prove that QBRA combined with extremely
simple congestion control at each flow source, solves the
problem ofweighted proportional fair(sum-log utility) end-
to-end throughput allocation among the flows. We also prove
an extension of this result for the case of additional mini-
mum flow-rate constraints. This generalizes and considerably
strengthens the corresponding result in [2]. The result in [2]
applies to single-hop flows and proves optimality of equilib-
rium but not convergence towards equilibrium: it does not
state the convergence to an optimal point – only the fact that
if convergence takes place, then optimality holds. A further
generalization - to more general utility functions - is also
possible, and will be considered as future work.

(ii) For the problem of queueing stability in the model
of exogenous arrivals as considered in Section VI, we prove
that QBRA “automatically” ensures stability without knowing
input rates, as long as nominal link loads are within the
network saturation throughput region. This generalizes some
of the stability results in [13], which apply to single-hop
flows. The stability proof in this paper is conducted with fluid
limit techniques but using a novel Lyapunov function that is
substantially different than that in [13] - the proof in [13]does
not generalize to the multi-hop case. We will elaborate on this
in Section V-D.

(iii) Finally, we present simulation results as consideredin
Section VII, with a variety of parameter setting, showing good
performance of QBRA, in particular in terms of end-to-end
delays.

II. BASIC NOTATION AND DEFINITIONS

Typically, we use bold lettersx, y, . . . to denote vectors,
as opposed to scalarsx, y, . . .. We use the notationsR,
R+ and R++ for the set of real, real non-negative and
real positive numbers, respectively. Correspondingly,d-times
product spaces are denoted asR

d, R
d
+ and R

d
++. We write

x · y to denote scalar product, and‖x‖ =
√

x · x for the
Euclidean norm, inducing the standard metric. Cardinality(i.e.
the number of elements) of a finite setA is denoted by|A|.
We denote[z]+ = max{z, 0}.

We use≺,�,≻,� for componentwise vector inequalities,
e.g.x ≻ y meansxi > yi, ∀i. For any scalar functionT : R →
R, T (x) = (T (x1), · · · , T (xd)) and for any subsetC ∈ R

d,
T (C) = {T (v) : v ∈ C}.

III. SYSTEM MODEL

A. Wireless Network Model

We consider a wireless multi-hop network described as a
directed graphG = (N ,L), whereN is the set of nodes
andL is the set of the logical (directed) communication links
between pairs of nodes;tl and rl are the transmitter and
receiver nodes respectively of linkl. There is a finite number
of traffic flows, indexed byr ∈ R; each flow has fixed source
and destination nodes, and a fixed route. Here throughout the
paper, we will use the terms flow and route interchangeably,

and use indexr for either one. LetLr ⊆ L denote the set
of links on router, and index linksl ∈ Lr from source to
destination in an ascending order asl(r, j), j = 1, 2, 3, · · · .
We also assume each node maintains separate queues of data
packets of different flows. LetQ(r)

l denote the queue length
of flow r packets located in the transmitter nodetl of link
l ∈ Lr. To simplify notation, we often writeQ(r)

j to mean

Q
(r)
l(r,j), i.e. for the queue length of flowr at thej-th node in

its route.
The system operates in discrete (or, slotted) timet =

0, 1, 2, · · · . In any time slot, each node may attempt to transmit
one packet at most on one of its outgoing links. A packet trans-
mission attempt on a link is successful if it is not “interfered
with” by another simultaneous transmission during the same
time slot; otherwise the transmission fails. The interference
model is the same as in [13] and [2], and is somewhat more
general than in [15]. First, any transmission attempt to a node
will fail if this node is transmitting. Second, if there are two
or more simultaneous transmissions to the same node, they all
fail. Third, for each noden there is the set of nodesNn ⊆ N
with which it interferes, namely, a transmission to any node
in Nn will fail if node n transmits. Note that according to our
interference model,n ∈ Nn andDn ⊆ Nn, whereDn ⊆ N\n
is the set of nodesm to which noden has data to send. In
summary, a transmission attempt on linkl ∈ L is successful if
and only if no node in the set{n : n 6= tl, rl ∈ Nn} transmits.

For eachn let us defineSn = {l ∈ L : rl ∈ Nn}. This
set includes links originating atn and links interfered with
by transmissions fromn. We consider thelink dependence
graph as defined in [2], i.e. the directed graph with vertices
being linksl ∈ L, in which the edge froml to another vertex
l′ ∈ L exists if and only ifl′ ∈ Stl

. Throughout the paper we
assume thestrong connectivityof the link dependence graph,
which assumes that there exists a directed path between any
two vertices.

B. Saturation Throughput Region and its Properties

Suppose the network employs a slotted-Aloha-type random
access protocol. Recall that each node maintains separate
queues for the packets of different flows. In each time slot
t, noden attempts a transmission with probabilityPn, and
chooses to transmit data from queueQ

(r)
l on link l with

conditional probabilityp
(r)
l /Pn, where p

(r)
l ≥ 0 is defined

for each pair(r, l) such thatn = tl and l ∈ Lr. Thus,p(r)
l is

the resulting probability of transmission of classr packets on
link l, and

Pn =
∑

l:n=tl

∑

r:l∈Lr

p
(r)
l ≤ 1, ∀ n ∈ N . (1)

We defineP to be the set of all feasible vectors of linkaccess
probabilitiesp = {p(r)

l , l ∈ Lr, r ∈ R}. Obviously,

P = {p ∈ [0, 1]d : Pn ≤ 1, ∀ n ∈ N}, (2)

where d =
∑

r∈R |Lr|. Given p ∈ P , the transmission
attempts by all nodes are independent, and then the resulting
average successful transmission rate (or, average throughput)
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allocated to flowr on the link l ∈ Lr is

µ
(r)
l (p) = p

(r)
l

∏

n6=tl,rl∈Nn

(1 − Pn). (3)

We will use notationµ(p) = {µ(r)
l (p), l ∈ Lr, r ∈ R}.

Definition 1: We define the systemsaturation throughput
region M as the set of all possibleµ(p), along with the
vectors dominated by them, namely,

M = {v ∈ [0, 1]d : ∃p ∈ P , s.t. v � µ(p)}. (4)

We also define the log-throughput regionlogM by

logM = {u = log v : v ∈ M, v ∈ R
d
++}

and its Pareto (“north-east”) boundary as

[logM]∗ ={u ∈ logM : if u � u′ ∈ logM, thenu = u′}.
Proposition 1: (Follows from Lemma 1 and Theorem 2 in

[2] ) The log-throughput regionlogM is convex and the
boundary[logM]∗ is a smooth(d−1)-dimensional surface in
R

d, which can be parametrized by the vectors of positivelink
weightsw = {w(r)

l , l ∈ Lr, r ∈ R} ∈ R
d
++, as follows. A

vectoru ∈ [logM]∗ if and only if there exists a unique (up to
scaling by a positive constant) link weights vectorw ∈ R

d
++

such thatu is the unique solution of the problem

max w · u s.t. u ∈ logM,

or an equivalent problemmax w · log v s.t. v ∈ M. (Thus,
the vectorw is the unique outer normal vector to the region
logM at the boundary pointu.) Moreover, the unique set of
access probabilitiesp such thatu = log µ(p) is given by

p
(r)
l =

w
(r)
l

∑

i∈Sn

∑

k:i∈Lk
w

(k)
i

, (5)

wheren = tl is the transmitter node of linkl. Different vectors
u ∈ [logM]∗ have different corresponding weights vectorsw;
this implies, in particular, that regionlogM is strictly convex.

We will denote byp(w) the function given by (5), and
for future reference adopt the convention thatp

(r)
l = 0 when

w
(r)
l = 0. This makesp(w) well defined for allw ∈ R

d
+, and

not just forw ∈ R
d
++, becausew(r)

l > 0 guarantees that the
denominator in (5) is positive as well. The important feature
of expression (5) is that the denominator is essentially the
sum of the weights of all links with which the transmitting
node n interferes including the link originating atn itself,
and so nodes can compute their access probabilities very
efficiently, using limited information exchange within their
local neighborhoods (see [13] and [2] for more details).

C. Queueing Dynamics

The generic queuing dynamics in the random access net-
work described above are as follows. Here we do not discuss
here how new packets arrive in the networks and how access
probabilities are set, which will be specified later. LetA(r)(t)
denote the number of exogenous data packet arrivals at the
source nodel(r, 1) of flow r in time slot t, and Q

(r)
j (t),

j = 1, . . . , |Lr|, be the queue length of typer packets at the

transmitter node of linkl(r, j) at time t, where the notation
l(r, j) is based on the conventionQ(r)

j = Q
(r)
l(r,j). Then,

Q
(r)
l (t + 1) =

{

Q
(r)
j (t) + A(r)(t) − h

(r)
j (t), j = 1

Q
(r)
j (t) + h

(r)
j−1(t) − h

(r)
j (t), 1 < j < |Lr|

whereh
(r)
j = 1 if there is a successful transmission of a flow

r packet on linkl(r, j) in slot t, andh
(r)
j = 0 otherwise.

IV. DYNAMIC QUEUE BACK-PRESSURERANDOM ACCESS

In this section we introduce a dynamic distributed algorithm,
called Queue Back-Pressure Random Access(QBRA), which
is the main subject of this paper. The algorithm generalizes
the Queue Length Based Random Access (QRA) scheme,
introduced in [13] and [2] for the special case of our model,
where all routes have length one. Under QRA, nodes choose
their access probabilitiesp dynamically, according to formula
(5), with link weightsw

(r)
l at time t being a fixed function

of the current queue lengthQ(r)
l (t). In the simplest form,

w
(r)
l = Q

(r)
l (t). (See [13] and [2] for more general weight

functions.)
Under the QBRA algorithm, nodes also dynamically choose

access probabilitiesp according to (5), with the weightw(r)
j

of flow r on link l(r, j) at timet being set to the currentqueue
differential, w

(r)
j = ∆Q

(r)
j (t), defined as follows:

∆Q
(r)
j (t)

.
=







[

Q
(r)
j (t) − Q

(r)
j+1(t)

]+

, 1 ≤ j < |Lr|,
Q

(r)
|Lr|

(t), j = |Lr|.
(6)

As usual, we identify∆Q
(r)
j and∆Q

(r)
l(r,j), and denote by∆Q

the vector of all∆Q
(r)
j in the network.

Obviously, under QBRA a transmission of a flowr packet
at timet on link l(r, j) will not be attempted unlessQ(r)

j (t)−
Q

(r)
j+1(t) > 0. This clearly implies that if inequality

Q
(r)
j (t) ≥ Q

(r)
j+1(t) − 1, (7)

holds for flowr on link l(r, j) at timet = 0, it then holds for
all t. In all cases considered throughout this paper, (7) in fact
holds for all flows and links at time0 and then for allt.

V. UTILITY BASED END-TO-END THROUGHPUT

ALLOCATION

In this section we study the scenario in which the sources of
all data flows are “saturated”, i.e. they have infinite amounts
of data to send. Informally, the problem is to allocate through-
puts x(r) to flows r along their respective routes in the
network by setting access probabilities of all nodes in a way
that maximizes theweighted proportional fairnessobjective
∑

r θ(r) log x(r), whereθ(r) > 0 are fixed weights.
This problem was considered in [15], where two dis-

tributed iterative algorithms for setting access probabilities
were proposed and proved to be optimal; these approaches
and results were generalized in [5]. However, the solution
approaches in [15] and [5], based on the dual and the pri-
mal algorithms in convex optimization, both need end-to-end
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feedback information to update variables maintained by the
nodes. This may induce increased delays due to the end-to-end
signaling along the route, especially in large-scale networks.
Moreover, the deterministic optimization-based algorithms of
[15] and [5] are oblivious to the actual queueing dynamics
in the network, which also may degrade performance metrics,
including delays.

The purpose of this section is to prove that the above
problem can be solved by the QBRA algorithm as well. The
solution is very simple. Each flowr source maintains a con-
stant queue lengthQ(r)

1 , proportional toθ(r), at the flow source
node. Then, as we show, the dynamics of the network queues
under QBRA are such that the queue lengths “converge” to
the values that induce access probabilities resulting in the
optimal end-to-end throughput allocation. Since QBRA uses
only local message passing between “neighboring” nodes, one
can say that QBRA provides a “more distributed” solution to
the problem than those in [15].

The solution provided by QBRA isasymptotically opti-
mal in the following sense. Queues at the source nodes are
maintained equal toθ(r)/η, whereη > 0 is a small scaling
parameter. This means that, roughly speaking, the parameter
η “scales up” all queues in the network by a large factor1/η.
The optimality is achieved whenη becomes infinitesimally
small. Consequently, our results concernfluid limits of the
queue length process, which are the limits of the process under
ηQ(t/η) space and time scaling, asη ↓ 0.

Finally, in this section we show that QBRA also solves a
more general problem, with additional, minimum end-to-end
throughput requirements,x(r) ≥ λ(r).

A. Problem Formulation

The problem is to operate our random access network in
a way such that the averageend-to-endflow throughputs
x(r) maximize

∑

r θ(r) log x(r), where θ(r) > 0 are fixed
parameters, while keeping all the queues in the network stable.
This in particular means that we want the values ofx(r) to
be those given (asx(r) = v

(r)
1 ) by a solution of the following

optimization problem for the average link-flow throughputsv:

max
v∈M

∑

r∈R

θ(r) log v
(r)
1 ,

subject to v
(r)
j−1 ≤ v

(r)
j ,

j = 2, . . . , |Lr|, r ∈ R. (8)

Here again we use notational conventionv
(r)
j = v

(r)
l(r,j), and we

will adopt similar ones accordingly throughout the paper. Since
any optimal solution to (8) must be such thatv ≻ 0, problem
(8) can be equivalently written in terms of log-throughputs
u = log v:

max
u∈logM

∑

r∈R

θ(r)u
(r)
1 ,

subject to u
(r)
j−1 ≤ u

(r)
j ,

j = 2, . . . , |Lr|, r ∈ R. (9)

Note that, given smoothness of the boundary[logM]∗ (see
Proposition 1), any interior pointu of logM is strictly
dominated by some boundary pointu∗ ∈ [logM]∗. (We can

choose any dominating point and then move it slightly within
the boundary so it strictly dominates.) This implies that any
optimal solutionu∗ to (9) must lie on the boundary[logM]∗.
Otherwise, we could move this point within the interior of
logM in a direction that improves the value of the objective,
while respecting the constraints. Moreover, since the region
logM is strictly convex by Proposition 1, the optimal solution
u∗ to (9) is unique. (Non-uniqueness would imply that we
could choose two optimal solutions,u∗,1 andu∗,2; then, the
middle pointu∗ = (u∗,1 + u∗,2)/2 has same objective value,
but cannot be optimal, since it is in the interior.) Thenv∗ such
thatu∗ = log v∗ is the unique solution of (8). Further, again by
Proposition 1, the unique (up to scaling) outer normal vector
to the smooth boundary[logM]∗ at pointu∗ has all positive
components. This implies that the optimal link throughputs
allocated to each flow along its route are all equal:

u
(r)∗
1 = . . . = u

(r)∗
|Lr|

, r ∈ R. (10)

Otherwise, we could improve the objective by slightly “mov-
ing” u∗ within the boundary[logM]∗.

Now, consider the Lagrangian for the problem (9):

L(q, u) =
∑

r∈R



θ(r)u
(r)
1 −

|Lr|
∑

j=2

q
(r)
j

(

u
(r)
j−1 − u

(r)
j

)



 , (11)

= ∆q · u, (12)

where, by convention,q is such thatq(r)
1 = θ(r) for all r, and

∆q is the vector with components

∆q
(r)
j =

{

q
(r)
j − q

(r)
j+1, 1 ≤ j < |Lr |,

q
(r)
|Lr |

, j = |Lr|.
(13)

Then, for any optimal dual solutionq∗, we must have

u∗ = arg max
u∈logM

∆q∗ · u, (14)

from which we conclude the following additional facts. First,
∆q∗ ≻ 0, that is

θ(r) > q
(r)∗
2 > . . . > q

(r)∗
|Lr|

> 0, r ∈ R, (15)

because if at least one of the components of∆q∗ would be
negative or zero, no pointu of logM could be an optimizer in
(14). (Because∆q∗ ·u could always be increased by a small
change ofu within logM.) Second, again using Proposition 1,
∆q∗ is an outer normal to[logM]∗ at u∗. From here, finally,
we conclude that the optimal dual solutionq∗ is unique, and it
is such that∆q∗ is the unique vector of positive weights that
produces the optimal ratesv∗ (namely,v∗ = µ(p(∆q∗))),
and satisfying additional conditionsq(r)

1 = θ(r) for all r.

B. Application of QBRA Algorithm

QBRA can be applied to solve problem (8) as follows. First
we fix a small parameterη > 0. Each flowr source maintains
a constant queue lengthQ(r)

1 = ⌊θ(r)/η⌋, at the flow source
node, where⌊·⌋ denotes the integer part of its argument. It is
always feasible to provide this condition because the source
has an infinite amount of data, and it can simply add a new
packet in the queue after each successful transmission fromit.
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Otherwise, the QBRA in the network works exactly as defined
earlier.

Without loss of generality, we can assume that at timet = 0,
the relationships (7) hold (for example, all queue lengths on
each route are0, except for that of the first queue), and so (7)
holds for all t.

We consider thefluid limit asymptotic regime. Namely, we
look at a sequence of systems, with parameterη ↓ 0. For each
system we consider the space-time rescaled queueing process
ηQ(t/η) in continuous timet ≥ 0, and then consider the
process-level limit of those, asη ↓ 0. The following fact,
proved essentially the same way as the analogous result in
[13], roughly speaking says that any limiting process is con-
centrated on the family of continuous trajectoriesq(t), t ≥ 0,
calledfluid sample paths, and describes their basic properties.
We omit the proof here - it follows essentially from the same
argument as that used for the analogous result in [13].

Proposition 2 (Fluid Limit): The sequence of rescaled pro-
cessesηQ(t/η), t ≥ 0, can be constructed on a common
probability space in a way such that, with probability1,
the sequence of realizations has a subsequence converging
uniformly on compact sets to a Lipschitz continuous trajectory
q(t), t ≥ 0, called thefluid sample path(FSP). The family of
FSPs satisfies, in particular, the following properties. For each
r,

θ(r)(t) ≡ q
(r)
1 (t) ≥ q

(r)
2 (t) ≥ . . . ≥ q

(r)
|Lr |

(t) ≥ 0; (16)

and for eachr and1 < j ≤ |Lr|,

d

dt
q
(r)
j (t) =

{

v
(r)
j−1(t) − v

(r)
j (t), q

(r)
j > 0,

[v
(r)
j−1(t) − v

(r)
j (t)]+, q

(r)
j = 0,

wherev(t) is such that

v(t) ∈ argmax
z∈M∆q(t) · log z, (17)

with the vector of queue differentials∆q(t) � 0 defined
analogously to (13).

Note that the ordering property (16) is the limiting version
of (7), and that the key property (17) follows from the fact that
QBRA uses queue differentials as link weights to set access
probabilities via (5).

We denote byD the set of all possible FSP statesq(t),
i.e. those satisfying inequalities (16), and by∂D the subset of
thoseq ∈ D with at least one zero component∆q

(r)
l = 0.

C. Asymptotic Optimality

Given the properties of optimal primal and dual solutions to
problem (9),u∗ andq∗, respectively, it follows immediately
that the stationary trajectoryq(t) ≡ q∗ satisfies all the FSP
properties described in Proposition 2. Moreover, analogously
to the way it is done in [2] for a simpler model, it is easy
to see that any stationary trajectoryq(t) ≡ q∗∗ 6∈ ∂D,
satisfying FSP properties in Proposition 2, must be such
that q∗∗ = q∗, because thenq∗∗ satisfies Karush-Kuhn-
Tucker (KKT) conditions for problem (9). This to some degree
motivates the following main result of this section.

Theorem 1:Every FSP is such thatq(t) → q∗ as t → ∞
and, consequently,v(t) → v∗. The convergence is uniform on
all FSPs.

Theorem 1 basically says that, when the parameterη > 0
is small, then regardless of the initial state of the queues,the
queues “converge to” and stay close to the values that result
via the QBRA rule for access probability assignment in the
optimal end-to-end throughput allocation. The key idea of the
proof of Theorem 1 is contained in the following Lemma 1,
which states that essentially the Lagrangian (11) of the convex
optimization problem (9) can serve as a Lyapunov function to
prove the convergences and we will discuss the technical ideas
below.

Lemma 1:For any FSP at any timet such thatq(t) ∈ D \
∂D, the following holds. The value ofv(t), and thenu(t) =
log v(t), is defined by (17) uniquely, and moreover

u(t) = arg maxu∈logM∆q(t) · u
andu(t) ∈ [logM]∗. Consequently,(q(t), u(t)) is a smooth
function of time in a neighborhood oft; by (12)L(q(t), u(t))
is the value of the convex dual problem to (9) at pointq(t),
and

∑

r∈R

θ(r)u
(r)∗
1 ≤ L(q(t), u(t)) ≤ 0; (18)

functionL(q, u) is smooth in a neighborhood of(q(t), u(t)),
and has zero partial gradient on primal variablesu at
(q(t), u(t)):

∇uL(q(t), u(t)) = 0. (19)

Finally,

d

dt
L(q(t), u(t)) (20)

= −
∑

r∈R

|Lr|
∑

j=2

(

v
(r)
j−1(t) − v

(r)
j (t)

) (

u
(r)
j−1(t) −u

(r)
j (t)

)

≤ 0,

(21)

and the inequality is strict unlessq(t) = q∗.
Proof: If q(t) ∈ D \ ∂D, then, by Proposition 1, in the

neighborhood of this point the dependence ofv(t) on q(t)
is given by the explicit smooth functionv(p(q)). Obviously,
the dependenceu = log v is smooth as well. Then, all the
properties described in the lemma clearly follow, using in
particular the smoothness of the boundary[logM]∗. Inequality
(21) holds because each differencev

(r)
j−1(t)−v

(r)
j (t) obviously

has the same sign as the corresponding differenceu
(r)
j−1(t) −

u
(r)
j (t); all such differences cannot be simultaneously equal to

0 unlessq(t) = q∗, because otherwise a stationary trajectory
“sitting” at a point different fromq∗ would exist.

In addition to the key Lemma 1, we need some auxiliary
results to prove Theorem 1.

Lemma 2:For any FSP and any timet ≥ 0, there exists
an arbitrarily close tot time s > t, such that∆q(s) ≻ 0, i.e.
q(s) ∈ D \ ∂D.

Proof: Let us call any link-route pair(l, r) such thatl ∈
Lr, a virtual link. For a given FSP, let us call(l, r) a “zero”
(resp. “non-zero”) virtual link at timet if ∆q

(r)
l = 0 (resp.
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> 0). Suppose there are some zero virtual links at timet.
If not, then the lemma statement is trivial. Since trajectory
q(·) is continuous, to prove the statement of the lemma it will
suffice to show that there exists a times > t, arbitrarily close
to t, such that at least one virtual link which was zero att
becomes non-zero ats. Indeed, this implies that we can “reset”
t to s, show that yet another link becomes non-zero at a time
arbitrarily close tos, and so on, until all links are non-zero.
Consider two cases.
Case (a): Suppose that on one of the routesr, there is a non-
zero virtual link followed by a zero one; that is∆q

(r)
j−1(t) > 0

and∆q
(r)
j (t) = 0. This is the situation in which a transmission

on the j-th link “kills” a simultaneous transmission on the
j−1-th link. Then, it is clearly seen from (17) thatv

(r)
j (t) = 0,

v
(r)
j−1(t) > 0, and both these functions are continuous in time

at t. Then, by (17),q(r)
j has positive, bounded away from

0, derivative in the interval(t, t + ǫ), with small ǫ > 0. In
the same time interval, also by (17), the derivative ofq

(r)
j+1 is

upper bounded by an arbitrarily smallδ > 0, if we choose
sufficiently smallǫ > 0. If j = |Lr|, then q

(r)
j+1(t) ≡ 0 by

convention. These facts mean that∆q
(r)
j (s) > 0 for all s ∈

(t, t + ǫ). We are done with case (a).
Case (b) = [NOT Case (a)]: At timet, along each router,
there is a (possibly empty) sequence of zero virtual links atthe
beginning, followed by the (definitely non-empty) sequenceof
non-zero virtual links until the end of the route. In this case,
there is at least one zero virtual link, let it be thej-th link on
router, such that it either shares a link with a non-zero virtual
link, or it interferes with transmissions on a non-zero virtual
link. Here the latter observation uses strong connectivityof
the link dependence graph. Either way,v

(r)
j (t) = 0 and it is

continuous at timet. For the first non-zero virtual link on this
route, say them-th with m > j, v

(r)
m (t) > 0 and is continuous

at t. Then, using (17) we clearly see that, in a small interval
(t, t + ǫ),

d

ds
[q

(r)
j+1(s) + . . . + q(r)

m (s)] < −C,

for someC > 0 independent ofǫ; and in the same interval
d
ds

q
(r)
j (s) > −δ, whereδ > 0 can be made arbitrarily small by

choosing smallǫ. We conclude that for anys ∈ (t, t + ǫ), we
must haveq(r)

j (s) > q
(r)
j′ (s) for at least onej′, j+1 ≤ j′ ≤ m,

and therefore one of the virtual links from thej-th to them−1-
th must be non-zero at times.

Lemma 3:For any FSP,∆q(t) ≻ 0 for all t > 0.
Proof: In view of Lemma 2, it suffices to show that if

∆q(t) ≻ 0 for t = s > 0, then this holds for allt ≥ s as
well. Suppose not, andτ , s < τ < ∞, is the first time afters
whenq(t) hits set∂D. This means that there exists a subset
of virtual links which simultaneously become zero at timeτ .
However, considering the values ofv

(r)
j (t) for t close toτ , and

essentially repeating the argument in the proof of Lemma 2,
we can show that for at least one of those links∆q

(r)
j (t) must

in fact be increasing for sucht, and therefore cannot hit0 at
τ - a contradiction to our assumption.

Proof of Theorem 1. According to Lemma 2, for any FSP
at any timet > 0, we are in the conditions of Lemma 1.

In particular, this means that the uniform bound (18) holds.
Thus, to prove the uniform convergenceq(t) → q∗ it remains
to show that the negative derivatived

dt
L(q(t), u(t)), given by

(20), is bounded away from zero as long asq(t) is outside of
an ǫ-neighborhood ofq∗. This is obvious if values ofq(t) are
confined to a compact set, not intersecting with∂D. To show
that it is still the case within the entire setD\∂D, it remains to
observe the following. If pointq approaches an arbitrary point
a ∈ ∂D, the derivatived

dt
L at q approaches−∞, because for

at least one virtual link, the correspondingv(r)
j−1 (see (20))

approaches0 while v
(r)
j does not, or vice versa. Here, again,

we essentially repeat the argument used for Lemma 2.�

D. Discussion: Key Features of FSP Dynamics under QBRA

At this point we would like to highlight key features of
FSP behavior under QBRA, which make it distinct from the
behavior of FSPs under “conventional” back-pressure based
algorithms in multi-hop networks. Consider inclusion (17),
which determines the instantaneous service ratesv(t) (in the
fluid limit). First, under QBRAv(t) is “chosen” within the
saturation throughput regionM, as opposed to the maximum
possible throughput region. Second, and this is key,v(t) is
chosen so that∆q(t) · log v(t) is maximized, as opposed
to maximizing∆q(t) · v(t) under conventional back-pressure
algorithms. Both features are already present in paper [13]
concerned, in particular, with queueing stability of the special,
single-hopversion of QBRA; and as shown in [13] these
features do not “prevent” the use of standard “sum-of-queue-
squares”-type Lyapunov functions (up to some adjustments)
to establish stability. However, for themulti-hop version of
QBRA considered in this paper, the second feature (log z
instead ofz in the right-hand side (RHS) of (17)) makes
sum-of-queue-squares type Lyapunov functions inapplicable
for queueing stability proofs (at least, we did not find a way
to use them), which in fact was the starting point of our work.
This prompted us to take a broader view which includes both
utility maximization problems of this section and (as we will
see in Section VI) the queueing stability problem, within a
unified framework. This led us to consider the Lagrangian-
type Lyapunov function used in the proof of Theorem 1,
which (as the proof shows) can be used to establish FSP
convergence, despite the second feature of FSP dynamics.
(This Lyapunov function does, however, rely on the convexity
of the log-throughputregion logM.) The generalization of
the utility maximization result, which we present next, is
both important in its own right and (as shown in Section VI)
allows the queueing stability result to “fall out” as essentially a
corollary. The use of Lagrangian-type Lyapunov functions for
queueing stability problems of back-pressure type algorithms,
i.e. treating such problems essentially as special cases ofutility
maximization, is novel and (as we show) it works in cases
when the traditional approach does not – this is one of the
main technical contributions of this paper.
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E. Generalization: Systems with Minimum Flow Rate Require-
ments

In practical systems, a minimum rate lower bound is often
required on the end-to-end throughput to guarantee Quality
of Service of the data transfers. Accordingly, Theorem 1 can
be generalized to include such additional constraints. More
precisely, suppose that the end-to-end throughput allocated to
each flowr needs to be at leastλ(r) ≥ 0. Formally, the more
general optimization problem which we will write directly in
terms of log-throughputsu = log v as in (9)), is

max
u∈logM

∑

r∈R

θ(r)u
(r)
1 ,

subject to u
(r)
j−1 ≤ u

(r)
j ,

j = 2, . . . , |Lr|, r ∈ R,

log λ(r) ≤ u
(r)
1 , r ∈ R. (22)

We will assume the following

Feasibility condition: Problem (22) is feasible, and more-
over all its inequality constraints can be satisfied as strict
inequalities.

This condition can be interpreted as follows. Let us denote

λno = {λ(r),no

l , l ∈ Lr, r ∈ R}, (23)

whereλ
(r),no

l = λ(r). Obviously,λno is the vector of mini-
mum rates each flows needs to receive on each link, in order
for the end-to-end rates to be at leastλ(r). The superscriptno
stands fornominalminimum link loads. Then, using properties
of the regionM, it is easy to verify that the feasiblity condition
is equivalent to the following one.

Feasibility condition (an equivalent form): Vectorλno is
strictly inside regionM, in the sense thatλno ≺ v′ for some
v′ ∈ M. In other words, the saturation throughput region
M is large enough to provide each flowr with a rate strictly
greater thanλ(r) on all its links.

Now, given the feasibility condition, there exists a unique
optimal solutionu∗ such that (10) holds, and the optimal
dual solutiony(r)∗, q

(r)∗
j , j = 2, . . . , |Lr|, r ∈ R, where

y(r)∗ are the duals corresponding to the minimum throughput
constraints. The generalized version of (15) is:

q
(r)∗
1 ≡ θ(r) + y(r)∗ > q

(r)∗
2 > . . . > q

(r)∗
|Lr |

> 0, r ∈ R, (24)

∆q∗ ≻ 0 is defined as in (13), and, again,u∗ =
arg maxu∈logM ∆q∗ · u.

To apply QBRA in this case we use a virtual queueY (r),
maintained by each flowr source node. “Tokens” are added
to Y (r) at the average rateλ(r) (tokens/slot); one token is
removed from it if there are any in every slot when a packet
of flow r is successfully transmitted from the source node. As
opposed to the previous situation, the source node uses not the
constant value⌊θ(r)/η⌋ as the queue lengthQ(r)

1 , but rather the
variableQ

(r)
1 (t) = ⌊θ(r)/η⌋+ Y (r)(t). Otherwise, the QBRA

in the network works exactly the same way as defined earlier
in Section IV.

An FSP now contains additional componenty(r)(t) for each

r, which is a limit ofηY (t/η), and it satisfies condition

d

dt
y(r)(t) =

{

λ(r) − v
(r)
1 (t), q

(r)
j > 0,

[λ(r) − v
(r)
1 (t)]+, q

(r)
j = 0,

in addition to (17). If we denote, by convention,q
(r)
1 (t) ≡

θ(r) + y(r)(t), then the key condition (17) determiningv(t)
still holds.

The generalization of Theorem 1 is the following.
Theorem 2:Assume the feasibility condition. Then, uni-

formly on all FSPs with initial statesq(0) within an arbitrary
fixed compact set,q(t) → q∗ as t → ∞ and, consequently,
v(t) → v∗.

Theorem 2 both generalizes and significantly strengthens a
result of [2], which applies to QBRA in a system with one-hop
routes and states only thatif convergenceq(t) → q∗∗ holds
thenq∗∗ = q∗.

Proof of Theorem 2 is carried out analogously to that of
Theorem 1. We do not provide details here, but rather just
the following key points. The Lagrangian in this case, which
serves as a Lyapunov function in the proof, is

L(q, u) =
∑

r∈R

θ(r)u
(r)
1 −

∑

r∈R

|Lr|
∑

j=2

q
(r)
j

(

u
(r)
j−1 − u

(r)
j

)

−
∑

r∈R

y(r)
(

log λ(r) − u
(r)
1

)

= ∆q · u −
∑

r∈R

y(r) log λ(r), (25)

where, by convention, for those flowsr with λ(r) = 0, we
havey(r) ≡ 0 andy(r) log λ(r) = 0. For each FSP, the bounds
(18) generalize as

∑

r∈R

θ(r)u
(r)∗
1 ≤ L(q(t), u(t))

≤ L(q(0), u(0)) ≤ −
∑

r∈R

y(r)(0) log λ(r). (26)

As in the proof of Theorem 1, an important intermediate step is
showing that∆q(t) ≻ 0 for all t > 0 - this is done analogously
to the arguments in Lemmas 2 and 3.

VI. STOCHASTIC STABILITY OF A NETWORK WITH

EXOGENOUSARRIVALS

We now turn to another version of our model, where flow
sources donot have an infinite supply of data to send, but
rather there is a random process of exogenous arrivals to the
first queueQ(r)

1 at the flow source node. For simplicity let us
assume that each such arrival processA(r)(t), t = 1, 2, . . .
is i.i.d. with the average rateλ(r) = E[A(r)(t)] > 0, and
all arrival processes are independent. The independent and
identically distributed (i.i.d.) and independence assumptions
can be greatly relaxed. Also, it is not an accident that here we
use the same symbolλ(r) for the input rate as we use used
for the minimum rate bound in Section V-E; the reason will
become clear shortly.

Consider such a network under the QBRA random access
scheme. The question is under which conditions the queueing
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processQ(t), t = 0, 1, 2, . . ., in the network is stable. If we
assume (for further simplicity) thatP{A(r)(t) = 0} > 0 for
eachr, then it is clear thatQ(t) is a countable state space,
irreducible, aperiodic Markov chain. By stability we mean its
ergodicity.

Note that, without loss of generality we can assume that
the “queueing order” relations (7) hold along each route at all
times.

The main result of this section is the following
Theorem 3:Suppose input ratesλ(r) > 0, r ∈ R, satisfy

the feasibility condition given in Section V-E. Then the net-
work queueing process is stable.

This theorem generalizes to the multi-hop setting one of
the stability results in [13], which apply to the single-hop
system. We emphasize again that our proof, outlined below,
is substantially different from that in [13], even though both
use fluid limits. (See the discussion in Section V-D.) Note
that, in the setting of this section, the feasibility condition
in its equivalent form (see Section V-E) has a simple and
intuitive meaning: the saturation throughput region is large
enough to support the nominal loadsλno imposed on the
individual network links by the traffic flows.

We will use thefluid limit techniqueto establish Theorem 3
(see [13] for an application of the technique to a random-
access system, and references therein to a general theory).
With this technique, we look at the fluid limit, defined analo-
gously to the way described in Section V-B. It is important to
emphasize that the QBRA algorithm in the network doesnot
use parameterη in any way. This is true for the use of QBRA
in Section V as well, but there traffic sources use the parameter
η to decide when to send new packets. In this section, the
parameterη is used only to define the fluid limit asymptotic
regime.

In our case, the FSPs turn out to satisfy the same properties
as those for the FSPs in Section V-E, but specialized to the
caseθ(r) = 0 for all r. This is not merely coincidental - it
is easy to observe that if in Section V-E we were to assume
that all θ(r) = 0, then the behavior of each virtual queueY (r)

there would be analogous to the behavior of actual queueQ
(r)
1

in the setting of this section.
Then, according to fluid limit technique, to prove Theorem 3

it suffices to prove the following
Theorem 4:There existsT > 0 such that, uniformly on all

FSPs with‖q(0)‖ = 1, we haveq(t) = 0 for all t ≥ T .
Proof. This proof is, again, analogous to the proof of

the convergence results in Theorems 1 and 2. We omit full
details, but the key points are as follows. Since allθ(r) = 0,
and consequentlyy(r)(t) ≡ q

(r)
1 (t), the Lagrangian in (25)

specializes to

L(q, u) = −
∑

r∈R

|Lr|
∑

j=2

q
(r)
j

(

u
(r)
j−1 − u

(r)
j

)

−
∑

r∈R

q
(r)
1

(

log λ(r) − u
(r)
1

)

= ∆q · u −
∑

r∈R

q
(r)
1 log λ(r). (27)

This Lagrangian is used as Lyapunov function, and for each

2

1

4

6

3
5

F l o w  1 F l o w  2

F l o w  3

Fig. 1. A 6-node ad-hoc network

FSP we have the bounds

0 ≤ L(q(t), u(t)) ≤ −
∑

r∈R

q
(r)
1 (0) log λ(r). (28)

In particular, if ‖q(0)‖ = 1, then L(q(t), u(t)) ≤
−∑

r log λ(r).
Using arguments analogous to those in Lemmas 2 and 3, we

can show that for allt > 0 a subset of components of∆q(t)
cannot hit0, unless all components hit0 simultaneously; this
implies that∆q(t) ≻ 0 for all 0 < t < t′, wheret′ is the first,
possibly finite time when∆q(t) = 0, and thenq(t) = 0. For
all 0 < t < t′, we have, analogously to (20),

d

dt
L(q(t), u(t))

= −
∑

r∈R

(

λ(r) − v
(r)
1 (t)

) (

log λ(r) − u
(r)
1 (t)

)

−
∑

r∈R

|Lr|
∑

j=2

(

v
(r)
j−1(t) − v

(r)
j (t)

) (

u
(r)
j−1(t) − u

(r)
j (t)

)

.(29)

Next, we prove that the RHS of (29) not only is non-positive,
but in fact is bounded away from0 by a negative constant−ǫ,
uniformly on all possibleu ∈ [logM]∗. Indeed, there exists a
sufficiently smallδ > 0 such that, for anyu ∈ [logM]∗, we
have

|λ(r) − v
(r)
1 | > δ or |v(r)

j−1 − v
(r)
j | > δ (30)

in at least one of the terms in the RHS of (29). Otherwise
λno ∈ [logM]∗, which contradicts the feasibility condition.
For the term that corresponds to the latter form in (30):
(

v
(r)
j−1 − v

(r)
j

)(

u
(r)
j−1 − u

(r)
j

)

≥
(

v
(r)
j−1 − v

(r)
j

)2

≥ δ2. (31)

Here we used the fact that(d/dz) log z > 1 whenz ∈ (0, 1).
Thus, L(q(t), u(t)), and thenq(t), must hit 0 within a

uniformly bounded time. The fact thatq(t) cannot leave0
after first hitting it clearly follows.�

VII. N UMERICAL EXAMPLE

In this section we investigate performance of QBRA via
simulations. We consider a simple 6-node, 3-route ad hoc
network as shown in Figure 1, which has the same network
topology as the second example in [15]. The nodes are labelled
from 1 to 6, and the interference model is such that each node
interferes with the reception at its one-hop neighbor nodesin



9

TABLE I
THE END-TO-END THROUGHPUTv(r) OF EACH ROUTE IN TWO CASES:

WITH /WITHOUT MINIMUM RATE REQUIREMENTS

Thru v(1) v(2) v(3)

Case 1 0.05196 0.12258 0.08770
Case 2 0.09934 0.07392 0.04957

the network graph. Therefore, we have

D1 = {2},D2 = {1, 3},D3 = {2, 4},
D4 = ∅,D5 = {3},D6 = {3, 5},
N1 = {1, 2},N2 = {1, 2, 3},N3 = {2, 3, 4, 5, 6},
N4 = {3, 4},N5 = {3, 5, 6},N6 = {3, 5, 6},

and the setsSn defined accordingly. Links are identified by
the pair(r, j), so that, for example,Q(1)

2 is the queue length
of flow 1 at the second link (from node 5 to node 3) on its
route.

We apply QBRA to solve both the optimal end-to-end flow
throughput allocation problem of Section V, and to provide
stability of the queues in the case of exogenous arrivals
(Section VI). We compare the performance of QBRA with
that of deterministic optimization based algorithms referred to
as OPTs, such as that in [15].

We would like to emphasize that, even when QBRA and
OPTs are applied to solve the same problem, such as (9),
there are significant differences between them: QBRA updates
network variables based on queue-lengths, while OPTs are
oblivious of the actual queues; QBRA can be implemented by
nodes exchanging queueing information within local neigh-
borhoods, while OPTs require end-to-end message passing
along each flow route. When we talk about providing queueing
stability in a system with exogenous arrivals, the difference is
even more pronounced: OPTs would require estimation of the
flow input rates to be used in the appropriate optimization
problem to calculate link access probabilities resulting in
sufficient link throughputs along each route; QBRA does not
need to know or estimate input rates and ensures stability
“automatically” when feasible.

A. End-to-end Throughput Allocation

Here we run QBRA to solve the problem (22) with weights
θ(1) = θ(2) = θ(3) = 1, in two cases. Case 1 is without
minimum rate constraints; Case 2 is with minimum rate
constraintλ(1) = 0.1 for flow 1, and none for the other
two flows. The resulting end-to-end throughputs after queues
“converge” are given in Table I. These throughputs are the
same as those produced by OPT as expected, since the problem
being solved by the two algorithms here is same.

For both Cases 1 and 2, we run the algorithm with three
different values of the scaling parameterη, namely,0.002,
0.01 and 0.05, to demonstrate how the dynamics of queues
depends on this parameter. Figures 2 and 3 show the dynamics
of the queues of flow 1 along its route. As predicted by the
asymptotic results in Theorems 1 and 2, the scaled queue
lengthsηQ

(1)
j “converge” and “stabilize” around the corre-

sponding valuesq(1)∗
j . Here “stabilize” and “converge” are in
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(c). with scaling factorη = 0.05.

Fig. 2. Behavior of flow 1 queues, under different scaling factor η.

quotation marks, because for any pre-limit system, with finite
η, there cannot be a convergence in the deterministic sense -
the queueing processes remain random. We can also see, again
as predicted by Theorems 1 and 2, that the “convergence” time
of the QBRA algorithm is roughly proportional to1/η. This
is true, however, as long asη remains sufficiently small; ifη
is “too large” as isη = 0.05 on Figures 2(c) and 3(c), the
fluctuations of the scaled queue lengthsηQ

(r)
j aroundq

(r)∗
j ,

even after the queues “converge”, will be too large, and the
accuracy of the algorithm will suffer. Therefore, the valueof
parameterη has to be chosen carefully to achieve a balanced
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(b). with scaling factorη = 0.01.
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(c). with scaling factorη = 0.05.

Fig. 3. Behavior of flow 1 queues, under different scaling factor η, with
minimum rate requirementsλ = (0.1, 0, 0).

tradeoff between oscillation around stationary regime andthe
time to converge. Namely, it should be chosen “as large as
possible, but not larger.”

B. System with Exogenous Arrivals

Here we simulate the system with exogenous (i.i.d. Poisson)
arrivals with equal rates for all flows,λ(1) = λ(2) = λ(3),
and we scale the rates up to observe the changes of the
queue lengths. The QBRA works exactly as specified in
Section VI. An OPT algorithm that we simulate works as
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Fig. 4. Comparison of the QBRA scheme and the optimization-based scheme
on queueing performance:λ(1) = λ(2) = λ(3).

follows: we a priori “pre-calculate” link access probabilities
so that the resulting end-to-end ratesx(r) provided to the
flows are maximal, subject tox(1) = x(2) = x(3). In other
words, we pretend that an optimization based algorithm is run
a priori to calculate appropriate access probabilities. OPT is
oblivious to the queue lengths, except that, when there are no
packets at a link, the link doesnot attempt transmission. We
study the total average queue length of each flowr which
by Little’s law is proportional to the end-to-end queueing
delay: Q(r) =

∑

l Q
(r)
l . Figure 4 comparesQ(1), Q(2) and

Q(3) under the QBRA and OPT. It shows that the average
queues under QBRA are significantly lower than those under
OPT. An intuitive explanation of this is that QBRA “better
adapts” to the current queue length in the network.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have considered a class of queue back-
pressure random access (QBRA) algorithms within a model of
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wireless networks with multi-hop flow routes, where the actual
queue lengths of the flows in each node’s close neighborhood
are used to determine the nodes’ channel access probabilities.
We have investigated the properties and performance of the
QBRA scheme under two different traffic models.

For the model with infinite backlog at each flow source,
we have shown that QBRA, combined with simple congestion
control local to each source, leads to the optimal solution
of a utility-based end-to-end throughput allocation, within
the networksaturation throughput regionachievable by ran-
dom access. The implementation of this scheme needs no
end-to-end message passing as in contrast to existing pure
optimization-based algorithms. We have further generalized
this local QBRA scheme to the case of additional, minimum
flow rate constraints. On the other hand, for the model with
stochastic exogenous arrivals, we have shown that QBRA
ensures stochastic stability of the queueing process as long as
nominal loads of the nodes are within the saturation throughput
region.

One subject of interest for future work is a study of the
queueing stability of random access schemes in the model of
multihop transmissions with link weights being defined more
generally than queue differentials. Meanwhile, another topic
is of interest to quantify and compare the queue performance
under different queue based random access schemes, and thus
to determine the optimal queue function in terms of queueing
delay.
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