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Abstract— We consider a model for random-access communi-
cation in networks of arbitrary topology. We characterize the
efficient (Pareto) boundary of the network throughput region as
the family of solutions optimizing weighted proportional fairness
objective, parameterized by linkweights. Based on this character-
ization we propose a general distributed scheme that usesdynamic
link weights to “move” the link-throughput allocation within the
Pareto boundary to a desired point optimizing a specific objective.

As a specific application of the general scheme, we propose
an algorithm seeking to optimize weighted proportional fairness
objective subject to minimum link-throughput constraints. We
study asymptotic behavior of the algorithm and show that link
throughputs converge to optimal values as long as link dynamic
weights converge. Finally, we present simulation experiments that
show good performance of the algorithm.

I. I NTRODUCTION

Next-generation wireless networks are likely to have a more
decentralized architecture than the current cellular networks.
For instance, in the emerging pico-cell architectures, the base
station may not continue to perform the role of a central
coordinating agent for the uplink access of user terminals.
Such a decentralized architecture is already employed in
802.11-based wireless networks.

An important issue in such networks is that of scheduling.
Due to the decentralized control constraints, a natural approach
to consider is random-access communication, as in the slotted
Aloha wireless LAN and 802.11 systems. It is well known,
however, that the multi-user contention for channel access, if
not well regulated, can lead to significant throughput degra-
dation even in wireless LAN random-access systems ([3] and
references therein), where any two concurrent transmissions
interfere with each other. The problem gets substantially more
aggravated in the networks with more general interference
structure (such as those arising in multi-hop communication),
where there are pronounced hidden-node and exposed-node
issues. Hence, it becomes important to determine the optimal
throughput that can be achieved in such more general random-
access systems and to devise distributed control schemes that
can operate the network close to it.

To address these problems, we consider a general model
for random-access communication in networks of arbitrary
topology. Briefly, the model is as follows (formal description
in Section II). Consider a network with a finite set of nodes

N . Each noden 2 N has one or several outgoing links(n;m)
to a subset of other nodesm 2 Dn � N . In each time slot,
noden accesses the channel with probabilitypn, and it chooses
only one of its outgoing links to transmit on with probabilities
pnm=pn. Each node transmits independently of other nodes.
A transmission by noden interferes with and “erases” any
simultaneous packet reception by any nodek within a subset
Nn � Dn. A transmission on a link(n;m) is successful if
it is not erased by any other simultaneous transmission. The
set of link throughputs� = f�nmg is thus a function of
the set of access probabilitiesp = fpnmg. This model is a
generalization of the classical slotted Aloha system, proposed
in [1] and analyzed in [8] (among others). It also generalizes
recently studied models for general topology networks in [6],
[12], where it is assumed thatk 2 Nn if and only if n 2 Nk.
The model of this paper is also related to another general
interference model of [4] - the main difference is that in [4]
erasures due to interference occur with certain probabilities,
not necessarily equal to1 or 0.

As mentioned before, we seek to devisedistributedcontrol
algorithms that achieveefficient throughput allocations�.
“Efficient” naturally means that allocation� is (or close to)
Pareto optimal, i.e., it is such that it cannot be improved upon.

Main Contributions

� For the general random-access network model above, we
characterize the Pareto boundaryM� of the throughput
region (under very mild additional condition), as a set
of � optimizing the following Weighted Proportional
Fairness (WPF) objective:

max
�2M

X
(n;m)

wnm log�nm; (1)

for all possible sets of positive link “weights”fwnmg.
This characterization generalizes that given in [8], [9] for
the classical Slotted Aloha, and is similar to that obtained
in [4] (for a different model).

� Just as the characterization the Pareto boundary for the
classical slotted Aloha model has provided many key
insights utilized in the design of practical random-access
systems, the above characterization of the Pareto bound-
ary M� leads us the following distributed procedure



for achieving a specific system objective. Link weights
wnm are used asdynamic control parameters; nodes
dynamically adjusttheir link weightswnm according to
their own “satisfaction” with observed link throughputs;
the link weights (in fact, only certain aggregates of them)
are shared among neighboring nodes; nodes dynamically
set their access probabilities to those optimal for the
WPF objective with the current link weights. As a result,
the set of link throughputs� “moves” to a desired
point while staying within the Pareto boundary. In other
words, although WPF (with fixed weights) in itself is a
very common and useful resource allocation objective in
communication networks (cf. [7]), it can also be used as
a “tool” for efficient throughput allocation in random-
access networks for perhaps very different objectives.

� We apply the above general approach to the specific prob-
lem of achieving weighted proportional fairnesssubject
to minimum link throughput constraints:

max
�2M

X
(n;m)

�nm log�nm; s.t. �nm � rnm;8(n;m); (2)

where �nm > 0 and rnm � 0 are fixed parameters.
We propose an algorithm utilizing very simpletoken
counter mechanism, similar to that in [2], [10], that
dynamically increases the dynamic weightwnm of the
links not achieving their required minimum throughput,
so that eventually, in steady state, they do achieve it.

� We study the dynamics of token counters and link
throughputs under the above algorithm, and prove its
optimality in the sense that, if the token counters con-
verge, then the link throughputs converge to the unique
solution of problem (2). Finally, we provide simulation
result which show good performance of the algorithm.

The rest of the paper is organized as follows. The formal
model is described in Section II. The optimal solution to
the WPF objective (with fixed weights) is in Section III.
Section IV contains characterization of the throughput region,
including smoothness properties of the Pareto boundary. In
Section V we describe the distributed algorithm for problem
(2). Section VI contains asymptotic analysis of the algorithm
(as one of its parameters becomes small), and proves its
optimality (in the sense described above). The simulation
experiments are discussed in Section VII.

Basic Notation.We use the notationsR, R+ andR++ for
the sets of real, real non-negative and real positive numbers, re-
spectively. CorrespondingI-times product spaces are denoted
RI , RI

+, andRI
++. The spaceRI is viewed as a standard

vector-space, with elementsx 2 RI being row-vectorsx =
(x1; : : : ; xI ), and with Eucleadian metric induced by the norm
kxk

:
=
�P

i x
2
i

�1=2
: Vector equalities and inequalities are

understood componentwise.

II. T HE MODEL

Our model is as follows. (It is a generalization of the
model of [6], [12].) The system consists of a finite setN =
f1; 2; : : : ; Ng of nodes, and operates in discrete time, with

time slots indexed byt = 0; 1; 2; : : : . Let Dn � N nn denote
the subset of nodes to which noden has data to send. A node
n at any timet may attempt transmission of one unit of data
(say, data packet) to one of the nodesm 2 Dn. When this
happens, we say that noden makes transmission attempt on
the link (n;m). We will denote by

I
:
= f(n;m) j n 2 N ; m 2 Dng

the set of all system links, and byI its cardinality (i.e., the
total number of links).

We assume that a node cannot simultaneously (i.e., within
the same slot) transmit on two or more different links. The in-
terference between simultaneous transmissions in the network
has the following structure. If a node transmits in a slot, any
simultaneous attempt to transmit to this node will fail. If there
are two or more simultaneous transmissions to a node, they
all collide and fail. Any transmission attempt by noden will
interfere with and “erase” any attempt to receive a message at
any of the nodes within some subset ofN , denoted byNn.
(The model of [6], [12] additionally assumes thatm 2 Nn

impliesn 2 Nm.) Given the above assumptions,Dn � Nn. (In
other words, a transmission attempt by noden may interfere
with receiving at more nodes than it actually sends traffic
to.) Also, because a noden transmission makes simultaneous
successful receiving impossible,n 2 Nn, for all n.

Consider the following “Slotted Aloha-type” random access
strategy. Each noden in each time slot transmits with proba-
bility pn, independently of other nodes and of the past history.
And when noden does transmit, it chooses a particular link to
transmit on, among the links(n;m); m 2 Dn, also randomly,
with probabilitiespnm=pn summing up to1, that isX

m2Dn

pnm = pn: (3)

Given this strategy, the average throughputs on the network
links are given by

�nm = pnm
Y

k: m2Nk; k 6=n

(1� pk): (4)

The dependence of the set (vector) of throughputs� =
(�nm; (n;m) 2 I) 2 RI

+ on the set (vector) of access
probabilities

p 2 P
:
= f(pnm; (n;m) 2 I) 2 [0; 1]I j (3) holdsg;

given by (4), will be denoted by�(p). Clearly, function�(p)
is continuous.

III. O PTIMAL SOLUTION FOR THEWEIGHTED

PROPORTIONAL FAIRNESSOBJECTIVE

The following Theorem 1 is a generalization of the cor-
responding result in [6], in that it applies to a more general
model and optimization objective. (It also generalizes some
of the results of [4].) The theorem shows that the problem
of choosing access probabilities optimizing theweighted pro-
portional fairnessobjective is relatively easy to solve, and it
serves as a starting point for the development in this paper.



For eachn 2 N , let us denote by

Sn
:
= f(`; k) j k 2 D`; k 2 Nng

the set of all links(`; k) which either originate atn or are such
that a transmission by noden interferes with that on(`; k).

Theorem 1:For arbitrary set of positive weightsw =
fwnm; (n;m) 2 Ig 2 RI

++, there exists a unique set of
access probabilitiesp 2 P that maximizes the function

F =
X

(n;m)2I

wnm log�nm: (5)

The optimalp is given by:

pnm =
wnmP

(`;k)2Sn
w`k

: (6)

Remark 1.Expression (6) can be equivalently rewritten as

pnm =
wnmP

m2Nn
W in

m

; (7)

where

W in
m

:
=

X
`: m2D`

w`m (8)

is the sum of the weights of all links “incoming” to nodem;
we will call W in

m the incoming weightof nodem.
Proof of Theorem 1.Consider a fixed noden. Suppose first

that the set
S�n

:
= f(`; k) 2 Sn j ` 6= ng

is non-empty. (In other words, noden’s transmissions interfere
with transmissions on at least one link not originating atn.) In
this case, anyp maximizingF must be such that0 < pnm �
pn < 1 for all m 2 Dn. Then, if we substitute (4) and (3) into
(5), we see that

@F

@pnm
=
wnm

pnm
�

X
(`;k)2S�n

w`k

1� pn
= 0;

which yields

pnm = (1� pn)
wnmP

(`;k)2S�n
w`k

: (9)

Summing up (9) overm 2 Dn, we obtain an equation forpn,
whose solution is

pn =

P
m2Dn

wnmP
m2Dn

wnm +
P

(`;k)2S�n
w`k

=

P
m2Dn

wnmP
(`;k)2Sn

w`k
:

(10)

Expressions (10) and (9) give (6). In the case whenS�n = ;,
it is easy to see that the access probabilitiespnm; m 2 Dn,
must maximize

P
m wnm log pnm subject to

P
m pnm � 1.

The unique solution is

pnm =
wnmP

k2Dn
wnk

:

However,S�n = ; means thatf(n; k) j k 2 Dng = Sn, and
thus expression (6) is still valid.

The dependence of the set (vector) of access probabilities
p 2 P on the set (vector) of positive link weightsw 2 RI

++,
given by (6), will be denoted byp(w). (Clearly, p(w) is
invariant with respect to scaling ofw by a positive constant.)

IV. SYSTEM THROUGHPUTREGION CHARACTERIZATION

From this point on in the paper, for brevity, we sometimes
denote links(n;m) 2 I by a single indexi, j, etc.

We define the systemthroughput regionM as the set of all
non-negative vectors, which can be majorized by vectors of
the form�(p), namely,

M
:
= f�0 2 [0; 1]I j �0 � �(p) for somep 2 Pg: (11)

We denote by

M� :
= f�� 2M j �� � �0 2M implies�0 = ��g (12)

the subset of maximal elements ofM , which can be called
the Pareto boundary ofM . Characterizing boundaryM� is
the main focus of this section. We denote by

M�
++

:
= M� \ RI

++ (13)

the subset of Pareto boundaryM� consisting of vectors with
all strictly positive components.

The following proposition describes basic properties of the
throughput regionM�. We omit the straightforward proof.

Proposition 1: (i) Throughput regionM is a compact set.
(ii) Set M� is non-empty. For any�� 2 M� there exists

p 2 P such that�� = �(p).
It follows from Theorem 1 that for anyw� 2 RI

++, �� =
�(p(w�)) 2 M�

++. The natural question is whether or not
the converse is true, namely, that for any�� 2 M�

++ we can
find w� such that�� = �(p(w�)). The answer is basically
yes, under a mild additional condition, as we show below in
Theorem 2.

Let U denote the system log-throughput region. More
precisely,

U
:
= flogx j x 2M \ RI

++g; (14)

where here and belowlog applied to a vector is understood
component-wise. The Pareto boundary ofU is

U� :
= flogx j x 2M� \ RI

++ �M�
++g: (15)

Lemma 1:The system log-throughput regionU is a closed
convex subset of the negative orthant ofRI .

Proof. It is easy to observe that, for any linki 2 I, log�i(p)
is a concave scalar function of the set of access probabilities
p. Then, for any�(1) = �(p(1)) 2 M \ RI

++ and �(2) =
�(p(2)) 2 M \ RI

++, a convex combination oflog�(1) and
log�(2) is

u = �1 log�
(1) + �2 log�

(2) � log�(�1p
(1) + �2p

(2)) 2 U:

This means thatu 2 U as well. Since anyu 2 U is dominated
by u0 = log�(p0) 2 U for some p0, the convexity ofU
follows. RegionU is closed becauseM is closed, andlog
is a continuous mapping.

Theorem 2, presented just below, characterizes the Pareto
boundary of the throughput region. This result is analogous
to the results of Sections 3.4-3.5 of [4], which apply to a
closely related - but different - model. In particular, Theorem 2
generalizes Theorem 6 of [4].



Consider the directed graph with vertices being linksi 2 I,
and the edge fromi = (n;m) to j existing if and only if
j 2 Sn n i. We will call this graph alink dependence graph.
(In the case when there is at most one link originating from
each node, this graph could be called “interference graph” -
the term used in [4].)

Since functionp(w) is invariant with respect to scaling of
w, we can restrict the domainRI

++ of p(w) to the normalized
setB

:
= fw 2 RI

++ j
P

i wi = 1g:
Theorem 2:Suppose, the link dependence graph is strongly

connected. (There is a directed path from any vertex to any
other.) Then, function�(p(w)) defines a homeomorphism
(mutually continuous one-to-one mapping) betweenB and
M�

++. Moreover, M�
++ is a smooth(I � 1)-dimensional

surface.
Proof of Theorem 2.The outline of the proof that�(p(w))

is a homeomorphism is as follows. For anyw 2 B, �(p(w)) 2
M�

++. Then, we establish the following sequence of assertions,
for a fixed�� 2M�

++.
Assertion 1.There existsw� 2 RI

++ such that�� =
�(p(w�)).

Assertion 2.Vector p(w�) is the unique vectorp 2 P
solving equation�� = �(p).

Assertion 3.Vectorw� is the unique vectorw 2 B solving
equation�� = �(p(w�)).

Assertion 4.If �0 ! ��, thenw0 ! w�, where�0 2 M�
++

and�0 = �(p(w0)).
Due to space limitation, we do not give the detailed proof of

these assertions, and of the smoothness ofM�
++. (All proofs

are given in [5].)

V. PROVIDING MINIMUM LINK THROUGHPUT

GUARANTEES: A DISTRIBUTED ALGORITHM

Suppose we want an efficient “distributed” random access
algorithm that satisfies certain minimum link throughput re-
quirements whenever this is feasible at all. It is also de-
sirable that the “leftover” system capacity, after satisfying
the minimum throughput constraints, is allocated in a “fair”
fashion. We will combine and specify this two objectives as
follows. Suppose, a weight�i > 0 and a minimum throughput
requirementri � 0 is given for each linki 2 I, that is,
there are two parameter vectors� = f�i; i 2 Ig 2 RI

++

and r = fri; i 2 Ig 2 RI
+. We want a distributed random

access algorithm such that, in steady state, the link throughput
allocation�� solves the following optimization problem:

max
x2M

X
i

�i logxi (16)

subject to

x � r: (17)

Equivalently, in terms of log-throughput regionU , we seek��

such thatu� = log�� solves the problem:

max
u2U

X
i

�iui (18)

subject to

u � log r: (19)

Note that if�� is a solution to (16)-(17) and it has the form

�� 2 argmax
x2M

X
i

��i logxi (20)

for somef��i ; i 2 Ig 2 RI
++, then �� 2 RI

++ and this
solution is unique. This and Theorem 2 easily imply that when
the link dependence graph is strongly connected, the solution
�� of (16)-(17) (if any) is unique.

The algorithm we propose is as follows. As before, lett =
0; 1; 2; : : : denote a time slot.

(A) Each noden, maintains a “token counter” (token queue
length)Qnm(t) for each of its outgoing links(n;m), which
is updated according to the following rule:

Qnm(t+ 1) = Qnm(t) + rnm � hnm(t) ; t = 0; 1; 2; : : : ;
(21)

wherehnm(t) = 1 if there was a successful transmission on
link (n;m) in slot t, andhnm(t) = 0 otherwise. (We will use
vector notationQ(t) = (Qi(t); i 2 I).)

(B) Each noden, for each of its outgoing links(n;m),
calculates dynamic weightwnm(t) = �nm+�Qnm(t), where
� > 0 is some (typically small) parameter, and sets its access
probabilities in slott according the expression (7).

Implementation considerations.Of course, the big ques-
tion is: How can a noden “know” the incoming weights
W in

m (defined in (8)) of the nodesm 2 Nn, i.e. nodes it
interferes with? The form of (7) allows (at least in principle)
the following natural procedure. Each transmission on any
link (`; k) contains the piggy-backed current dynamic weight
w`k(t) of the link. Thus, each nodem can maintain an esti-
mate of its incoming weightW in

m . Each nodem periodically
“broadcasts” itsW in

m , so it can be “heard” by all the nodes
whose transmissions may interfere with reception by nodem.
(In particular,W in

m can be piggy-backed into transmissions
from nodem.) Each noden listens to the broadcast messages
described above, which allows it to estimate the sum in the
denominator of (7).

VI. A SYMPTOTIC BEHAVIOR OF THE ALGORITHM WITH

SMALL PARAMETER �

In this section we study the dynamics of user throughputs
and token counters, under the algorithm described in Sec-
tion V, when parameter� > 0 is small. Namely, we consider
an asymptotic regime such that� converges to0. We study
the dynamics offluid sample paths(FSP), which are (roughly
speaking) possible trajectoriesq(t) of a random process that
is a limit of the process�Q(t=�) as� ! 0. (In other words,
trajectoriesq(t) “approximate” the processQ(t) scaled down
by factor�, and with1=� time speed-up.) The main result of
this section (Theorem 3) basically says that if FSP is such that
q(t) converges to some finite vectorq� as t ! 1, then link
throughputs converge to the unique solution to the problem
(16)-(17).



Remark 2.A stronger result would be to prove that the
convergence ofq(t) in fact holds as long as problem (16)-(17)
is feasible; this would prove the asymptotic optimality of the
algorithm, as it is done, for example, for the Greedy Primal-
Dual (GPD) [10] algorithm, for adifferent model. Proving
asymptotic optimality of the algorithm of this paper may
be a subject of future work. We note that, since problem
(18)-(19) is convex, the GPD algorithm can in principle be
applied (and be provably optimal), if we would “work” with
logarithms of the throughputs; this however would require that
we measure throughputs over longer time intervals (and thus
updates token counters less frequently), which would result in
a much “slower” algorithm.

Remark 3.It is shown in [11] that the algorithm of this
paper, with any fixed parameter�, ensures that the users
will receive the desired minimum throughputs as long as the
constraint (17) is feasible. However, the results of [11] do not
address the utility maximization objective (16).

We now define the asymptotic regime and an FSP. Let us
denote by

Fi(t) =

t�1X
s=0

hi(s); t = 0; 1; 2; : : : ; i 2 I;

the total number of successful transmissions on linki by (and
excluding) timet, and denoteF (t) = (Fi(t); i 2 I). We
extend the time domain of functionsF (t) andQ(t) to all real
t � 0 by adopting the convention that they are constant within
each time slot[t; t+ 1) for all integert � 0.

Consider a sequencef�g of positive values of�, converging
to 0. For each�, let (F �(�); Q�(�)) be a realization of
the corresponding random process, with some fixed initial
Q�(0). Assume that the sequence of realizations is such that
a functional law of large numbers (FLLN) condition holds for
the process governing transmission attempt decisions by node
n at different timest, given its “current” (depending ont) set
of access probabilities. (The precise condition is given in [5].)

Consider the following rescaled trajectory for each�:

(f� = (f�(t); t � 0); q� = (q�(t); t � 0));

wheref�(t) = �F �(t=�) andq�(t) = �Q�(t=�).
Definition: A pair of vector-functions(f = (f(t); t �

0); q = (q(t); t � 0)) is called a fluid sample path
(FSP), if the uniform on compact sets (u.o.c.) convergence
(f� ; q�) ! (f; q) holds for at least one sequencef�g and
the corresponding sequence(f� ; q�) of scaled trajectories, as
defined above.

Theorem 3:Suppose an FSP(f; q) is such that

q(t)! q� 2 RI
+ as t!1:

Then, the problem (16)-(17) is feasible, with�� = �(p(� +
q�)) being its unique optimal solution, and(d=dt)f(t)! ��.

To prove Theorem 3, we will first describe the basic FSP
properties in Lemma 2.

Lemma 2:The family of fluid sample paths has the follow-
ing properties.

(i) All component functionsfi(t); t � 0, and qi(t); t � 0,
are Lipschitz continuous, uniformly across all FSPs. Conse-
quently, any FSP is such that proper derivativesf 0i(t) andq0i(t)
exist for almost allt � 0 (with respect to Lebesgue measure).
(ii) “Shift property.” If (f; q) is an FSP, then for anyd � 0,
(�df; �dq) is also an FSP, where

[�df ](t) = f(t+ d)� f(d); [�dq](t) = q(t+ d); t � 0:

(iii) “Compactness.” If a sequence of FSPs(f (j); q(j)) !
(f; q) uniformly on compact sets asj ! 1, then (f; q) is
also an FSP.
(iv) For any FSP, for almost allt � 0 we have:

f 0(t) = �(p(�+ q(t))); (22)

and, for eachi 2 I,

q0i(t) =

�
ri � f 0i(t) if qi(t) > 0;
maxfri � f 0i(t); 0g if qi(t) = 0:

(23)

(Consequently, sincef(t) is Lipschitz and�(p(w)) is contin-
uous, the derivativef 0(t) exists for allt > 0.)

Proof. See [5].
Proof of Theorem 3.Using shift and compactness properties,

from the FSP as in the theorem statement, it is easy to see that
the “stationary” trajectory, given by

q(t) � q�; f 0(t) � �� = �(p(�+ q�)) (24)

is also an FSP. We immediately see that vectorr cannot lie
outside regionM , for otherwiseri > ��i for at least onei,
implying (by (23)) thatqi(t)!1, which contradicts (24).

If we use notationu� = log��, then, by the definition of
function�(p(�)) (see (5)),

u� 2 argmax
u2U

X
i

(�i + q�i )ui: (25)

If we specialize (23) for the stationary FSP defined above, we
see thatq�i > 0 implies��i = ri, or, equivalently,

q�i (u
�
i � log ri) = 0 for all i: (26)

If we view q�i as Lagrange multipliers for the constrained
optimization problem (18)-(19), we see that, by Kuhn-Tucker
theorem, (25) and (26) imply thatu� is a solution to that
problem. The uniqueness of solutionu� follows from the
representation (25), as noted in the remark containing (20).

VII. SIMULATION RESULTS

We now present simulation results for the algorithm in-
troduced in Section V. Throughout this section we always
assume that weights�i = 1 (see (16)) for all links, and so
the system objective is to maximize the sum of the logarithms
of link throughputs, subject to minimum link throughput
constraints (17). The parameter� = 0:001 is same throughout
all experiments.

We start with a simple 3-node network, shown in Figure 1.
A bi-directional link on the figure, say between nodes 1 and
2, means that both(1; 2) and (2; 1) are communication (data



transmission) links of the system. There is no interference
between nodes 2 and 3. (That is,3 62 N2 and 2 62 N3.) For
this network, expressions (8) and (7) specialize to:

W in
1 = w21 + w31; W

in
2 = w12; W

in
3 = w13;

p1m =
w1m

W in
1 +W in

2 +W in
3

; pm1 =
wm1

W in
1 +W in

m

; m = 2; 3:

Table I shows steady state link throughputs (after they con-
verge) for two cases. The first is the “baseline” case when
we do not impose any minimum throughput requirements,
i.e., rnm = 0 for all links. In the second case, we introduce
minimum throughput requirementr2;1 = 1=7 for link (2; 1),
and leavernm = 0 for all other links. We see that, in the
second case, the algorithm indeed “lifts” the throughput of
link (2; 1) to the desired minimum level (at the expense of
the throughputs on the other links, of course.) The token
counters (and therefore the dynamic weights) in the second
scenario indeed “converge” (see [5]), up to some inevitable
“jitter” since � is finite; this guarantees (by Theorem 3) that
the throughput allocation is indeed optimal.

2

1

3

Fig. 1. 3-node system.

all rn;m = 0 r2;1 = 1=7(= 0:1429)
�1;2 0.1649 0.1437
�2;1 0.1115 0.1432
�1;3 0.1677 0.1609
�3;1 0.1114 0.1023

TABLE I

3-NODE SYSTEM. STEADY STATE LINK THROUGHPUTS.

Next, we consider a more complex 10-node network, shown
in Figure 2. As before, a solid bi-directional link means
presence of a communication link in both directions. A bi-
directional dashed link means mutual interference between
nodes. (For example,4 2 N9 and9 2 N4. Recall that also, if
a communication link(n;m) exists, then, by our definitions,
n causes interference tom; for example,10 2 N4.) As for
the 3-node network, we consider two cases: “baseline,” with
rnm = 0 for all links, and the second case where we have
minimum throughput requirement for one of the links, namely
r5;9 = 0:1 for link (5; 9). Steady state link throughputs for
both cases are shown in Table II. We see that the throughput
of link (5; 9) is indeed “lifted” to approximately the required
level. (An interesting - although not very surprising - obser-
vation is that, in systems of general topology, introducing
minimum throughput requirement on one of the links does
not necessarily result in the decrease of the throughputs onall
other links.) Again, simulation shows (see [5]) that the token

1 2 3 4 5 6 7
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Fig. 2. 10-node system.

all rn;m = 0 r5;9 = 0:1
�1;10 0.0569 0.0492
�10;1 0.0901 0.0896
�2;10 0.0564 0.0490
�10;2 0.0894 0.0891
�3;10 0.0359 0.0287
�10;3 0.0689 0.0744
�4;10 0.0380 0.0290
�10;4 0.0670 0.0742
�5;9 0.0412 0.0986
�9;5 0.0691 0.0492
�6;9 0.0876 0.0687
�9;6 0.0716 0.0668
�7;8 0.1245 0.1048
�8;7 0.1817 0.2042

TABLE II

10-NODE SYSTEM. STEADY STATE LINK THROUGHPUTS.

counters indeed “converge,” which guarantees optimality of
the the throughput allocation.

Acknowledgement.We are grateful to Yuliy Baryshnikov
for pointing out that the convexity of log-throughput region
can be directly observed, as in the proof of Lemma 1.

REFERENCES

[1] N. Abramson. The ALOHA system – Another alternative for computer
communications.Proc. AFIPS Conf., Vol. 37, (1970), pp. 281-285.

[2] M. Andrews, L. Qian, A. L. Stolyar. Optimal Utility Based Multi-User
Throughput Allocation subject to Throughput Constraints.Proceeding of
INFOCOM’2005, Miami, March 13-17, 2005.

[3] P. Gupta, Y. Sankarasubramaniam, A. L. Stolyar. Random-Access
Scheduling with Service Differentiation in Wireless Networks.Proceed-
ing of INFOCOM’2005, Miami, March 13-17, 2005.

[4] P. Gupta, A. L. Stolyar. Throughput Region of Random Access Networks
of General Topology. Bell Labs Technical Memo, 2005. Submitted.

[5] P. Gupta, A. L. Stolyar. Optimal Throughput Allocation in Random
Access Networks of General Topology. Bell Labs Technical Memo, 2005.

[6] K. Kar, S. Sarkar, L. Tassiulas. Achieving Proportionally Fair Rates using
Local Information in Aloha Networks.IEEE Trans. Autom. Control,Vol.
49, (2004), No. 10, pp. 1858–1862.

[7] F. P. Kelly. Mathematical Modelling of the Internet. In: Engquist B.,
Schmidt W. (eds).Mathematics Unlimited - 2001 and Beyond.Springer,
Berlin, 2001, pp. 685-702.

[8] J. Massey and P. Mathys. The collision channel without feedback.IEEE
Trans. Inform. Theory,Vol. IT-31, (1985), no. 2, pp. 192–204.

[9] K. A. Post. Convexity of the Nonachievable Rate Region for the
collision channel without feedback.IEEE Trans. Inform. Theory,Vol.
IT-31, (1985), No. 2, pp. 205–206.

[10] A. L. Stolyar. Maximizing Queueing Network Utility subject to Stability:
Greedy Primal-Dual Algorithm.Queueing Systems, 2005, Vol.50, No.4,
pp.401-457.

[11] A. L. Stolyar. Dynamic Distributed Scheduling in Random Access
Networks. Bell Labs Technical Memo, 2005. Submitted.

[12] X. Wang and K. Kar. Distributed Algorithms for Max-min Fair Rate
Allocation in Aloha Networks.Proceedings of the 42nd Annual Allerton
Conference, Urbana-Champaign, 2004.


