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Abstract—We consider a model for random-access communi- A”. Each node: € A" has one or several outgoing links, m)
cation in networks of arbitrary topology. We characterize the to a subset of other nodes € D,, C A. In each time slot,
efficient (Pareto) boundary of the network throughput region as noden accesses the channel with probabifify and it chooses

the family of solutions optimizing weighted proportional fairness - . . . . s
objective, parameterized by linkweights Based on this character- only one of its outgoing links to transmit on with probabilities

ization we propose a general distributed scheme that uselynamic  Pnm /Pn- Each node transmits independently of other nodes.
link weights to “move” the link-throughput allocation within the A transmission by node: interferes with and “erases” any

Pareto boundary to a desired point optimizing a specific objective. simultaneous packet reception by any nddeithin a subset
As a specific application of the general scheme, we Propose s 5 p_ A transmission on a linKn,m) is successful if

an algorithm seeking to optimize weighted proportional fairness it is not erased by anv other simultaneous transmission. The
objective subject to minimum link-throughput constraints We y any :

study asymptotic behavior of the algorithm and show that link Set of link throughputsu = _{Mnm} is thus a functior_1 of
throughputs converge to optimal values as long as link dynamic the set of access probabilitigs= {p,.,}. This model is a

weights converge. Finally, we present simulation experiments that generalization of the classical slotted Aloha system, proposed
show good performance of the algorithm. in [1] and analyzed in [8] (among others). It also generalizes
recently studied models for general topology networks in [6],
[12], where it is assumed thate N, if and only if n € A.

Next-generation wireless networks are likely to have a mofithe model of this paper is also related to another general
decentralized architecture than the current cellular networlsterference model of [4] - the main difference is that in [4]
For instance, in the emerging pico-cell architectures, the basasures due to interference occur with certain probabilities,
station may not continue to perform the role of a centralot necessarily equal tb or 0.
coordinating agent for the uplink access of user terminals.As mentioned before, we seek to deviistributedcontrol
Such a decentralized architecture is already employed digorithms that achieveefficient throughput allocationsu.
802.11-based wireless networks. “Efficient” naturally means that allocatiop is (or close to)

An important issue in such networks is that of schedulin@areto optimal, i.e., it is such that it cannot be improved upon.
Dueto t_he d_ecentrallzed control constramts_, a natu_ral approacfﬂ/lain Contributions
to consider is random-access communication, as in the slotted
Aloha wireless LAN and 802.11 systems. It is well known, *
however, that the multi-user contention for channel access, if
not well regulated, can lead to significant throughput degra- ST ) , i
dation even in wireless LAN random-access systems ([3] and ©f # optimizing the following Weighted Proportional
references therein), where any two concurrent transmissions Faimess (WPF) objective:
interfere with each other. The problem gets substantially more

. . . max Z Wym 10E fhrm D

aggravated in the networks with more general interference nEM
structure (such as those arising in multi-hop communication),
where there are pronounced hidden-node and exposed-node for all possible sets of positive link “weights{w,,, }.
issues. Hence, it becomes important to determine the optimal This characterization generalizes that given in [8], [9] for
throughput that can be achieved in such more general random- the classical Slotted Aloha, and is similar to that obtained
access systems and to devise distributed control schemes that in [4] (for a different model).
can operate the network close to it. « Just as the characterization the Pareto boundary for the

To address these problems, we consider a general model classical slotted Aloha model has provided many key
for random-access communication in networks of arbitrary insights utilized in the design of practical random-access
topology. Briefly, the model is as follows (formal description  systems, the above characterization of the Pareto bound-
in Section Il). Consider a network with a finite set of nodes ary M* leads us the following distributed procedure

I. INTRODUCTION

For the general random-access network model above, we
characterize the Pareto boundavf* of the throughput
region (under very mild additional condition), as a set

(an)



for achieving a specific system objective. Link weight§me slots indexed by = 0,1,2,.... Let D,, C '\ n denote
wny, are used aglynamic control parameters; nodesthe subset of nodes to which nodéhas data to send. A node
dynamically adjustheir link weightsw,,,,, according to n at any timet may attempt transmission of one unit of data
their own “satisfaction” with observed link throughputs(say, data packet) to one of the nodesec D,,. When this
the link weights (in fact, only certain aggregates of thenf)appens, we say that nodemakes transmission attempt on
are shared among neighboring nodes; nodes dynamicahg link (n,m). We will denote by
set their access probabilities to those optimal for the .
WPF objective with the current link weights. As a result, T={(n,m)|neN, meDy}
the set of link throughputg: “moves” to a desired the set of all system links, and b¥its cardinality (i.e., the
point while staying within the Pareto boundary. In othefotal number of links).
words, although WPF (with fixed weights) in itself is a We assume that a node cannot simultaneously (i.e., within
very common and useful resource allocation objective the same slot) transmit on two or more different links. The in-
communication networks (cf. [7]), it can also be used asrference between simultaneous transmissions in the network
a “"tool” for efficient throughput allocation in random-has the following structure. If a node transmits in a slot, any
access networks for perhaps very different objectives. simultaneous attempt to transmit to this node will fail. If there
» We apply the above general approach to the specific prafre two or more simultaneous transmissions to a node, they
lem of achieving weighted proportional fairnessbject all collide and fail. Any transmission attempt by nodewill
to minimum link throughput constraints interfere with and “erase” any attempt to receive a message at
any of the nodes within some subset.®f denoted byV,,.
(The model of [6], [12] additionally assumes that € N,
impliesn € N,,.) Given the above assumptioi3, C N,,. (In
where a,,, > 0 and rp;, > 0 are fixed parameters. gther words, a transmission attempt by nodenay interfere
We propose an algorithm utilizing very simpleken ith receiving at more nodes than it actually sends traffic
counter mechanism, similar to that in [2], [10], thatto ) Also, because a nodetransmission makes simultaneous
dynamically increases the dynamic weight,, of the syuccessful receiving impossible,e A, for all n.
links not achieving their required minimum throughput, Consider the following “Slotted Aloha-type” random access
so that eventually, in steady state, they do achieve it. strategy. Each node in each time slot transmits with proba-
» We study the dynamics of token counters and linkility p,,, independently of other nodes and of the past history.
throughputs under the above algorithm, and prove ifghd when node: does transmit, it chooses a particular link to
optimality in the sense that, if the token counters cofransmit on, among the link8:, m), m € D, also randomly,

verge, then the link throughputs converge to the uniqygth probabilitiesp,,,, /p, summing up tol, that is
solution of problem (2). Finally, we provide simulation

result which show good performance of the algorithm. > Pam =P (3)

The rest of the paper is organized as follows. The formal mEDn
model is described in Section Il. The optimal solution t&iven this strategy, the average throughputs on the network
the WPF objective (with fixed weights) is in Section llllinks are given by
Section IV contains characterization of the throughput region,
including smoothness properties of the Pareto boundary. In Hnm = Pnm H
Section V we describe the distributed algorithm for problem
(2). Section VI contains asymptotic analysis of the algorithm The dependence of the set (vector) of throughputs
(as one of its parameters becomes small), and proves (g, (n,m) € I) € Rfr on the set (vector) of access
optimality (in the sense described above). The simulatigmobabilities
experiments are discussed in Section VII. . I

Basic NotationWe use the notation®, R, and R for p€P = {Pam, (n,m) €1) €0,1] | (3) holds,
the sets of real, real non-negative and real positive numbers,gien by (4), will be denoted by.(p). Clearly, functionu(p)
spectively. Correspondinfrtimes product spaces are denotet$ continuous.
R!, RL, and R! . The spaceR’! is viewed as a standard
vector-space, with elements € R’ being row-vectorse =

o 108 finmy Sit. fhmm > T ¥(n,m), (2
Lne%c(z)a og finm > Tnm,¥(n,m), (2)
n,m

(1= pg)- (4)

k: meNy, k#n

1. OPTIMAL SOLUTION FOR THEWEIGHTED
PROPORTIONAL FAIRNESS OBJECTIVE

(z1,...,zr), and with Eucleadian metric induced by the norm
||| = [Zi$%]1/2~ Vector equalities and inequalities are The following Theorem 1 is a generalization of the cor-
understood componentwise. responding result in [6], in that it applies to a more general
model and optimization objective. (It also generalizes some
Il. THE MODEL of the results of [4].) The theorem shows that the problem

Our model is as follows. (It is a generalization of thef choosing access probabilities optimizing theighted pro-
model of [6], [12].) The system consists of a finite 9ét= portional fairnessobjective is relatively easy to solve, and it
{1,2,...,N} of nodes and operates in discrete time, withserves as a starting point for the development in this paper.



For eachn € NV, let us denote by
Sn ={(l,k) | k € Dy, k € Ny}

the set of all linkg¢, k) which either originate at or are such
that a transmission by node interferes with that or{/, k).
Theorem 1:For arbitrary set of positive weightay =

{wpm, (n,m) € I} € R, there exists a unique set of

access probabilitieg € P that maximizes the function
F = Z W 1O thpm -
(n,m)eT
The optimalp is given by:

®)

wnm (
Z(z,k)esn Wek

Pnm =

IV. SYSTEM THROUGHPUTREGION CHARACTERIZATION

From this point on in the paper, for brevity, we sometimes
denote links(n, m) € Z by a single index, j, etc.

We define the systermroughput region)/ as the set of all
non-negative vectors, which can be majorized by vectors of
the formu(p), namely,

M ={u' €[0,1]" | p' < p(p) for somep € P} (11)
We denote by
M*={p*eM|p <p €Mimpliesy' =pu*} (12)

the subset of maximal elements #&f, which can be called
the Pareto boundary of M. Characterizing boundary/* is

Remark 1 Expression (6) can be equivalently rewritten aghe main focus of this section. We denote by

wnm

Pnm = < 157000
ZmENn W;#

D, wim

l: meD,

is the sum of the weights of all links “incoming” to node;
we will call Wi the incoming weightof nodem.

(7)
where

Win = (8)

* . * I
M, =M*nRL, (13)

the subset of Pareto boundaty* consisting of vectors with
all strictly positive components.
The following proposition describes basic properties of the
throughput regiom/*. We omit the straightforward proof.
Proposition 1: (i) Throughput regionM is a compact set.
(ii) Set M* is non-empty. For any* € M* there exists

Proof of Theorem 1Consider a fixed node. Suppose first p € P such thatu* = u(p).

that the set
Sy ={(tK) €S, | L#n})

is non-empty. (In other words, noa#és transmissions interfere

with transmissions on at least one link not originating gtin
this case, any maximizing F' must be such thal < p,,, <

pn < 1forall m € D,. Then, if we substitute (4) and (3) into

(5), we see that

OF _ Wnm _ Z We
a nm B nm 1- n -
P P (R ESY P
which yields
Wnm
Pam =1 —pn)=—"——. 9)
nm n Z(Z,k)esvf Wer

Summing up (9) ovem € D,,, we obtain an equation fqf,,
whose solution is

Do = EmeDn Wnm — ZmeDn Wnm
Y omeD, Wnm + X (e kyess Wik 2o(ekyes, Wek
(10)
Expressions (10) and (9) give (6). In the case wisen= 0,
it is easy to see that the access probabilifigs,, m € D,,

must maximize)_, = wpm logpny subject 0" prpm < 1.
The unique solution is

p _ wnm
o ZkeDn Wnk
However,S,, = ) means thaf(n,k) | k € D,} = S,,, and
thus expression (6) is still valid. |

It follows from Theorem 1 that for anw* € R, p* =
pu(p(w*)) € M;,. The natural question is whether or not
the converse is true, namely, that for gmy € M7, we can
find w* such thaty* = p(p(w*)). The answer is basically
yes under a mild additional condition, as we show below in
Theorem 2.

Let U denote the system log-throughput region. More
precisely,

U={logz | reMnR,}, (14)

where here and belowwg applied to a vector is understood
component-wise. The Pareto boundarylbfs

U*={logz |z€ M*"NR, =M} }. (15)

Lemma 1:The system log-throughput regidnis a closed
convex subset of the negative orthantRf.

Proof. It is easy to observe that, for any lidke Z, log u;(p)
is a concave scalar function of the set of access probabilities
p. Then, for anyu™® = pu(pV) € M N RL, and p® =
u(p®) € M N RL,, a convex combination oog (! and
log u® is

u = aq log ™M + azlog u'? < log (e p™ + anp®) € U.

This means that € U as well. Since any. € U is dominated

by v = logu(p') € U for somep’, the convexity ofU

follows. RegionU is closed becausé/ is closed, andog

is a continuous mapping. |
Theorem 2, presented just below, characterizes the Pareto

The dependence of the set (vector) of access probabilittesundary of the throughput region. This result is analogous

p € P on the set (vector) of positive link weights € Rfr+,
given by (6), will be denoted by(w). (Clearly, p(w) is

to the results of Sections 3.4-3.5 of [4], which apply to a
closely related - but different - model. In particular, Theorem 2

invariant with respect to scaling @f by a positive constant.) generalizes Theorem 6 of [4].



Consider the directed graph with vertices being linksZ, subject to

and the edge fromi = (n,m) to j existing if and only if

j € S, \ i. We will call this graph dink dependence graph

(In the case when there is at most one link originating fromote that if 1* is a solution to (16)-(17) and it has the form

each node, this graph could be called “interference graph” - .

the term used in [4].) pe argrg;[axz a; logz; (20)
Since functionp(w) is invariant with respect to scaling of ve i

w, we can restrict the domaiRi] , of p(w) to the normalized for some {a}, i € 7} € RL_, thenpy* € RL, and this

setB={weRL, | ¥, w =1} solution is unique. This and Theorem 2 easily imply that when
Theorem 2:Suppose, the link dependence graph is strondlye link dependence graph is strongly connected, the solution

connected. (There is a directed path from any vertex to apy of (16)-(17) (if any) is unique.

other.) Then, functionu(p(w)) defines a homeomorphism The algorithm we propose is as follows. As before tlet

(mutually continuous one-to-one mapping) betweBnand 0,1,2,... denote a time slot.

M . Moreover, M7, is a smooth(I — 1)-dimensional  (A) Each node:, maintains a “token counter” (token queue

surface. length) @,...(t) for each of its outgoing linkgn, m), which
Proof of Theorem 2The outline of the proof that(p(w)) is updated according to the following rule:

is a homeomorphism is as follows. For amye B, u(p(w)) €

M, . Then, we establish the following sequence of assertion&rm(t +1) = Qum(t) + rnm

u > logr. (19)

— B (), t=0,1,2,...,

for a fixedp* € M7, . (1)
Assertion 1.There existsw* € R, such thaty* = whereh,,,(t) = 1 if there was a successful transmission on

w(p(w*)). link (n,m) in slott, andh,,, (t) = 0 otherwise. (We will use
Assertion 2.Vector p(w*) is the unique vectop € P  vector notationQ(t) = (Q;(t), i € T).)

solving equatior* = u(p). (B) Each noden, for each of its outgoing linkgn,m),
Assertion 3Vectorw* is the unique vectow € B solving calculates dynamic weight,,.,, (t) = am + 8Qnm (t), where

equationy* = u(p(w*)). B > 0 is some (typically small) parameter, and sets its access
Assertion 4If p' — p*, thenw' — w*, wherep' € My,  probabilities in slott according the expression (7).

andpy' = p(p(w')). Implementation considerations.Of course, the big ques-

Due to space limitation, we do not give the detailed proof afon is: How can a node: “know” the incoming weights
these assertions, and of the smoothnesa/df, . (All proofs Wi (defined in (8)) of the nodes: € A, i.e. nodes it
are given in [5].) B interferes with? The form of (7) allows (at least in principle)
the following natural procedure. Each transmission on any
link (¢, k) contains the piggy-backed current dynamic weight
wyr(t) of the link. Thus, each node:r can maintain an esti-

Suppose we want an efficient “distributed” random accessate of its incoming weightV,". Each noden periodically
algorithm that satisfies certain minimum link throughput retbroadcasts” itsi;?, so it can be “heard” by all the nodes
quirements whenever this is feasible at all. It is also dethose transmissions may interfere with reception by nade
sirable that the “leftover” system capacity, after satisfyingn particular, W* can be piggy-backed into transmissions
the minimum throughput constraints, is allocated in a “fairfrom nodem.) Each node: listens to the broadcast messages
fashion. We will combine and specify this two objectives agescribed above, which allows it to estimate the sum in the
follows. Suppose, a weighi; > 0 and a minimum throughput denominator of (7).
requirementr; > 0 is given for each linki € Z, that is,
there are two parameter vectars= {a;, i € T} € R, VI. ASYMPTOTIC BEHAVIOR OF THE ALGORITHM WITH
andr = {r;, i € Z} € R.. We want a distributed random SMALL PARAMETER 3
access algorithm such that, in steady state, the link throughputn this section we study the dynamics of user throughputs

V. PROVIDING MINIMUM LINK THROUGHPUT
GUARANTEES. A DISTRIBUTED ALGORITHM

allocationy* solves the following optimization problem: and token counters, under the algorithm described in Sec-
tion V, when paramete > 0 is small. Namely, we consider
;HE%CZ% log z; (16) an asymptotic regime such thatconverges tc). We study
i the dynamics ofluid sample pathgFSP), which are (roughly
subject to speaking) possible trajectorigét) of a random process that

is a limit of the proces$Q(t/3) as — 0. (In other words,
T2 17) trajectories(t) “approximate” the proces§(t) scaled down

Equivalently, in terms of log-throughput regiéh we seek.* by factor 3, and with1/3 time speed-up.) The main result of

such that* = log u* solves the problem: this section (Theorem 3) basically says that if FSP is such that
q(t) converges to some finite vectgt ast — oo, then link
maXZaiui (18) throughputs converge to the unique solution to the problem
wev (16)-(17).



Remark 2.A stronger result would be to prove that thei) All component functionsf;(t), ¢+ > 0, and¢;(t), ¢t > 0,
convergence of(¢) in fact holds as long as problem (16)-(17pare Lipschitz continuous, uniformly across all FSPs. Conse-
is feasible; this would prove the asymptotic optimality of thguently, any FSP is such that proper derivatifigg) andg;(t)
algorithm, as it is done, for example, for the Greedy Primagxist for almost alt > 0 (with respect to Lebesgue measure).
Dual (GPD) [10] algorithm, for adifferent model Proving (ii) “Shift property.” If (f,q) is an FSP, then for any§ > 0,
asymptotic optimality of the algorithm of this paper may#f,f,64q) is also an FSP, where
be a subject of future work. We note that, since problem
(18)-(19) is convex, the GPD algorithm can in principle be [04f1(t) = f(t +d) = f(d), [#aq](t) = q(t +d), t=0.
applied (and be provably optimal), if we would “work” with (jii) “Compactness.” If a sequence of st(a‘),q(j)) N
logarithms of the throughputs; this however would require thaf, ¢) uniformly on compact sets ag — oo, then (f,q) is
we measure throughputs over longer time intervals (and thalso an FSP.
updates token counters less frequently), which would result(ig) For any FSP, for aimost all > 0 we have:

a much “slower” algorithm. ,

Remark 3.It is shown in [11] that the algorithm of this f(t) = ppla + q(t))), (22)
paper, with any fixed parametep, ensures that the usersyng for each e 7,
will receive the desired minimum throughputs as long as the

constraint (17) is feasible. However, the results of [11] do not 4!(t) = { ri = fi(t) , !f ai(t) > 0, (23)
address the utility maximization objective (16). max{r; — fi(t),0}  if ¢;(t) =0.
We now define the asymptotic regime and an FSP. Let (Gonsequently, sincg(t) is Lipschitz andu(p(w)) is contin-
denote by uous, the derivativg’(t) exists for allz > 0.)
i1 Proof. See [5]. |
Fi(t) = Z hi(s), t=0,1,2,..., i€, Proof of Theorem 3Using shift and compactness properties,
—0 from the FSP as in the theorem statement, it is easy to see that

the total number of successful transmissions on libly (and the “stationary” trajectory, given by

excluding) timet, and denoteF'(t) = (F;(t), i € I). We oty =q*,  f'(t) =p* = plpla+qh)) (24)
extend the time domain of functiodd(t) andQ(¢) to all real

¢ > 0 by adopting the convention that they are constant withiii /S0 an FSP. We immediately see that vectaannot lie
each time sloft, ¢ + 1) for all integert > 0. outside region), for otherwiser; > p; for at least one;,

Consider a sequendg} of positive values of, converging IMPIYing (by (23)) thatg; () — oo, which contradicts (24).
to 0. For eachB, let (F?(-),Q%()) be a realization of |f We use notationu* = logu*, then, by the definition of
the corresponding random process, with some fixed initiinction u(p(-)) (see (5)),

Q°(0). Assume that the sequence of realizations is such that u* € arg maxz(ai + )i (25)
a functional law of large numbers (FLLN) condition holds for wel ’

the process governing transmission attempt decisions by n
n at different timest, given its “current” (depending ot) set
of access probabilities. (The precise condition is given in [5

?fj\feve specialize (23) for the stationary FSP defined above, we
]s)ee thaty} > 0 implies uf = r;, or, equivalently,

Consider the following rescaled trajectory for eath qi (uj —logr;) =0 for all 1. (26)
(f° = (fP(t), t>0), ¢ = (°t), t >0)), If we view ¢; as Lagrange multipliers for the constrained
optimization problem (18)-(19), we see that, by Kuhn-Tucker
B(+) = & B(4) = &
where f°(t) = BF” (t/8) and¢”(t) = BQ"(t/0). theorem, (25) and (26) imply that* is a solution to that

Definition: A pair of vector-functions(f = (f(t), ¢t > problem. The unigueness of solutiari follows from the

0), ¢ = (a(t), t > 0)) is called afluid sample path representation (25), as noted in the remark containing (20
(FSP), if the uniform on compact sets (u.o.c.) convergencep lon (25), I ining (20).

|
(f%,4¢%) — (f,q) holds for at least one sequen¢g} and
the corresponding sequentg?, ¢°) of scaled trajectories, as VIl. SIMULATION RESULTS
defined above. . We now present simulation results for the algorithm in-
Theorem 3:Suppose an FSEf, ) is such that troduced in Section V. Throughout this section we always

assume that weights; = 1 (see (16)) for all links, and so

the system objective is to maximize the sum of the logarithms

Then, the problem (16)-(17) is feasible, withh = u(p(a + of link throughputs, subject to minimum link throughput

¢*)) being its unique optimal solution, arid/dt) f (t) — p*. constraints (17). The paramefge= 0.001 is same throughout
To prove Theorem 3, we will first describe the basic FS&Il experiments.

properties in Lemma 2. We start with a simple 3-node network, shown in Figure 1.
Lemma 2: The family of fluid sample paths has the follow-A bi-directional link on the figure, say between nodes 1 and

ing properties. 2, means that botll,2) and (2, 1) are communication (data

q(t) = q* € Rfr ast — oo.



transmission) links of the system. There is no interference
between nodes 2 and 3. (That ¢ N> and2 ¢ N3.) For
this network, expressions (8) and (7) specialize to:

W™ = wa1 +ws1, Wy = wia, W3" = wis,

Wim Wm1
s Pm1 = m = 2,3. AW

T Wi Wi+ Wi Win + Wi’ ofololofo
Table | shows steady state link throughputs (after they con-

verge) for two cases. The first is the “baseline” case when Fig. 2. 10-node system.
we do not impose any minimum throughput requirements,

Pim

. . ) m =0 =0.1
i.e., rnm = 0 for all links. In the second case, we introduce PTRT: a 6”6269 ’"5690492
minimum throughput requirememt ; = 1/7 for link (2, 1), fi1o.1 0.0901 0.0896
and leaver,,, = 0 for all other links. We see that, in the 12,10 0.0564 0.0490
second case, the algorithm indeed “lifts” the throughput of 5103 8-822‘9‘ 8822#
. ; .. 3,10 . .
link (2,1) to the desired minimum level (at the expense of T 0.0689 00744
the throughputs on the other links, of course.) The token 14,10 0.0380 0.0290
counters (and therefore the dynamic weights) in the second £10,4 8.8212 8.8;;12
scenario indeed “converge” (see [5]), up to some inevitable 15,9 : :
s y s . . 19,5 0.0691 0.0492
jitter” since g is finite; this guarantees (by Theorem 3) that 16,9 0.0876 0.0687
the throughput allocation is indeed optimal. 19,6 0.0716 0.0668
17,8 0.1245 0.1048
us,7 0.1817 0.2042
TABLE I

10-NODE SYSTEM STEADY STATE LINK THROUGHPUTS

counters indeed “converge,” which guarantees optimality of
the the throughput allocation.

Acknowledgement.We are grateful to Yuliy Baryshnikov
for pointing out that the convexity of log-throughput region
can be directly observed, as in the proof of Lemma 1.

Fig. 1. 3-node system.
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