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Abstract—The back-pressure algorithm is a well-known decentralized heuristics. We refer the interested read{8]t
throughput-optimal algorithm. However, its implementation re-  [9] and references within for some recent results alongethes
quires that each node has to maintain a separate queue for @ac |inas We do not consider complexity or decentralizaticués

commodity in the network, and only one queue is served at a . . . . .
time. This fact may lead to a poor delay performance even when in this paper; our proposed solutions can be approximatéd we

the traffic load is not close to network capacity. Also, sincghe DY the solutions suggested in the above papers.

number of commodities in the network is usually very large, he Besides complexity and decentralization issues which have
queueing data structure has to be maintained at each node is received much attention recently, the back-pressure itthgor
respectively complex. In this paper, we present a solutiondt  can gai50 have poor delay performance. To understand that,

address both of the above issues in the case €iked-routing let ider théixed fi . h th te f
network scenario where the route of each flow is chosen upon et us consiaer Xed-routingscenario where the route for

arrival. Our proposed architecture allows each node to maitain ~ €ach flow is chosen upon arrival by some standard multi-hop
only per-neighbor queues, and moreover, improves the delay wireless network routing algorithm such as DSR or AODV

performance of the back-pressure algorithm. and the back-pressure algorithm is simply used to schedule
packets. In operation, the back-pressure algorithm assign
|. INTRODUCTION weight to each flow on each link. The weight is equal to

S . . .t
Resource allocation in wireless networks is comphcat7ﬂ

due to the shared nature of wireless medium. One particuInk is equal to the maximum weiaht of anv flow that uses
allocation algorithm called thkack-pressure algorithrwhich q g y

encompasses several layers of the protocol stack from MA link. The back-pressure algorithm then selects a s¢aedu

to routing was proposed by Tassiulas and Ephremides,y}/n ich maximizes the sum of the weights of the links included

their seminal paper [1]. The back-pressure algorithm win, the schedule. Under such an algorithm, for a link to be

shown to bethroughput-optimal i.e., it can support any Scheduled, its weight should be slightly larger than zemmwvN

. N we consider a flow that traversés links, and use an informal
arrival rate vector which is supportable by any other reseur I S .
. ) . rgument to show why it is very intuitive that the flow’s total
allocation algorithm. Recently, it was shown that the back-

pressure algorithm can be combined with congestion cotarol14SHe accumulation along its route should grow quadrgticgl
fairly allocate resources among competing USers in a veisel with the route length. The queue length at the destination

network [2]-[7], thus providing a complete resource altama Sor this flow is equal to zero. The queue length at the first

solution from the transport layer to the MAC layer. While bucupstream node from the destination will be some positive
. . .number, say¢. The queue length at the second upstream node
a combined algorithm can be used to perform a large vari 1}

of resource allocation tasks, in this paper, we will concatet ?r%m the destination will be even larger and for the purposes

on its application to routing and scheduling only. of obtaining insight, let us say that it &. Continuing this

i . : . reasoning further, the total queue length for the flow will be
Even though the back-pressure algorithm delivers maX|mu%l|+2+' |+ K) — O(K?). Thus, the total backlog on a path

throughput by adapting itself to network conditions, thare braT . :
several issues that have to be addressed before it can' intuitively expected to grow quadratically in the number

widely deployed in practice. As stated in the original papé)r %ops. On the other hand, suppose a fixed service rate is

[1], the back-pressure algorithm requires centralizedrmt- allocated to each flow on each link on its path, then the queue

. : . . . length at each hop will be roughl®(1) depending on the
tion and computation, and its computational complexity Iéilization at that link. With such a fixed service rate alition,

too prohibitive for practice. Much progress has been maﬁ,I . .
pron rorp ch prog . .~ the total end-to-end backlog should then grow linearly ia th
recently in easing the computational complexity and degvi S ;
number of hops. However, such an allocation is possible only

An earlier version of this work was presented at the IEEE IE  if the packet arrival rate generated by each flow is known to
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nificantly. Notice that in the case of fixed-routing, it is tl cannot provide any analytical result, the simulation rssul
to implement back-pressure algorithm using per-flow queues confirm our intuition of its delay reduction from quadratic
but it is also possible to implement it using per-destimatio to linear (in terms of the number of hops). (Section VI.)
gueues. In other words, the traditional back-pressureidfigo

requires either per-flow or per-destination queues. We will Il. SYSTEM MODEL

show that it is sufficient to maintain onfyer-neighborqueues .
at each node, instead of per-flow or per-destination queueéet us gonS|der anetwork modelgd by a gra@hs .(N’ £),
ere N is the set of nodes and is the set of links. We

required by the traditional back-pressure algorithm. Irgyéa w that ti is slotted with a tvpical ti lot denoted
networks, the number of flows (or destinations) is typicallgsstuq}e I'ak Ime 1S slo eﬁ, ;’r\:' ‘.": typica _|br|net3(t) enqte
much larger compared to the number of neighbors of ea § o Ihaiin (n,m) is in L, then it is possible to transmi

node, thus using per-neighbor queues can result in sigm’ficgaCkfts. ftromhr_wo:ez_"tob n(()jdem_l;suﬁjeﬁt tt(l) tr\;\? mt_TIrfererrlbcei
reduction in implementation complexity. constraints which will be described shortly. We Wil usetbo

An attempt to reduce the number of queues using clusteriﬁ%iat'ons(”’m) and interchangeably to indicate a network

hitect din [11]. H ,in [11], pet
architecture was proposed in [L1]. However, in [11], pe We let F be the set of flows that share the network

destination queues are still maintained at each node, ane fo
each destination cluster and one for each node within [&Sources. Packets of each flow enter the network at one node,

travel along multiple hops, and then exit the network at heot
node. In this paper, we only consider fiteed routingscenario,
i.e., the route of each flow is pre-determined and fixed during

clustering approach: first, it allowger-neighborqueues to be the_t|me of |r_1terest. For each€ 7, let L(f) denote the set
maintained at each node, which leads to a drastic reduc:’lionoif links forming the route off, and let:
the number of real data queues to be implemented:; and second, Jirst(f) € L(f) be the firstlink on the route off;
it has the additional benefit of delay reduction. The reaser i * last(f) € L(f) be the lastink on the route off;
also referred to [12] in which the authors tried to reducagdel * 0(f) € N be the begin (entering) node, i.&(f) belongs
of back-pressure algorithm by considering a simplified,-sub 10 first(f); and,
optimal version of the network utility maximization pronte  * ¢(f) € N be the end (exiting) node, i.e(f) belongs to
In summary, the main contributions of this paper are as last(f).
follows: Also, for each pair(f,7) wherel € L(f), let us define:
« We present the disadvantages of back-pressure algorithmy nezt(f,1) € L(f) as the link after in the route off if
in the aspects of number of queues and delay perfor- | -£ jast(f); and,
mance. We formally characterize the delay performance, prev(f,1) € L(f) be the link beford in the route off
of back-pressure algorithm using the number of hops as if [ # first(f).
the metric. In particular, we show that, under the back- We define a valid schedule — (<7, 1, ... ’Crm to be

pressure algorithm, the worst-case total queueing backlog ) )
for any flow scales quadratically in its number of hopsf" set of link rates (measured in terms of number of packets)

. that can be simultaneously supported. Note that due to the
(Section IIl.) Yy supp

« We then propose thehadow queueingrchitecture to interference between links, for eaghsomec] could be zero.

address those disadvantages of back-pressure alg;oritp(|1qu.r eover, we mgke a natural and _nonrestrictive assumption
This architecture is twofold: first, it allows each noddhat if 7 is a valid schedule, then if we replace any subset

to maintain only per-neighbor FIFO queues instead 81’( its components by zeros, the modified schedule is valid as

per-flow queues required by the back-pressure algorith ,e"' We also assume thaf is upper-bounded by_ SOM&az
and hence, reduces its implementation complexity; se@ anY7™ and!. LetI" be the set of all possible valid schedules,

ond, it significantly improves the delay performance Ozlmdco/(\l“o)l denoterz] the convke,x huII_df. . hich is defined
traditional back-pressure algorithm with a small cost of Let A denote the networksapacity regionwhich is define

throughput degradation. (Section IV.) as the set of all flow rates that are supportable by the network

o We establish the stabilities of both shadow and regiven the set of flows and their corresponding routes. In
€ A if there exists au = {u};c,

queueing systems. The stability result for real queuB@ticulanA = {As}c»

are not obvious due to the fact that now each nod'ch that:

maintains only per-neighbor FIFO queues. Because ofe Af < Kyirsi(f), Vf € F, and,

the radically different architectures of real queues ande® £ < Hnext(f.1), V.f € F, L € L(f), I # last(f), and,

shadow queues, to the best of our knowledge, there is* # € co(I).

no sample-path relationship between them which would The traffic in the network can belasticor inelastic If the

allow us to conclude stability. We show that the stability igraffic is inelastiq i.e., the flows’ rates are fixed (and within

possible because of its connection to Bramson'’s stabilitige capacity region), then the goal is to route/schedule the

result for FIFO queues [13]. (Section V.) traffic through the network while ensuring that the queues in
« We then present extensive simulation results to shawe network are stable. If the traffic &astic then the goal

significant improvements on delay performance of this to allocate the network’s resources to all flows in some fai

proposed shadow queueing architecture. Although wmeanner. More precisely, suppose that each flow has a utility

own cluster. Clustering also requires additional commaitioo
between clusters to ensure stability. Theadow queueing
architecture in this paper is fundamentally different frimt



function associated with it. The utility function of floyi, the rate at which it injects packets into the ingress queue as
denoted byU;(-), is defined as a function of the data rate follows:

sent by flowf, and assumed to be concave and nondecreasing. Qf 1]
The goal, in the case of elastic traffic, is to determine the zplt] = min{[];l < b(f) ) 7xmam}7

optimal solution to the following resource allocation pierhn: M
max Z U () (1) yvherex,,}@ is an upper-bound of the arrival rates, aMi
= is a positive parameter. We again assume that, conditioned

on the rate vector calculated by the above congestion dontro
algorithm, the arrival processes of the flows are independen
where A is the capacity regiondescribed above. of each other, independent from time slot to time slot, and
have finite second moments.

sit. zeA,

Il TRADITIONAL BACK-PRESSUREALGORITHM It has been shown in [1] that, for inelastic traffic, the

A. Description and Drawbacks traditional back-pressure algorithmtlroughput-optimalFur-

Wi q ibe the traditional back lqorith thermore, for elastic traffic, the authors in [2]-[7] havewn
¢ now describe the traditional back-pressure algorting; ;g algorithm, jointly with the above congestion goht

which was first proposeq_in [1]. As we mentioned egrlier, O.naﬁgorithm can solve the optimal resource allocation pobl
can implement the traditional back-pressure algorithnmgisi (1). However, the traditional back-pressure algorithm has

either per-flow or per-destination queues in the fixed-rmiti 5 oo, major drawbacks. Its first drawback is the fact that

fﬁena“(}'l Howevler, for :ht? sake IOf f5|mpI|C|ty, we V\I"H Eﬁmm it requires per-flow (per-destination) queues. This fatéci$
€ per-tiow implementation only Irom now on. in e pefy, scalability of the algorithm, since in large commurimat

flow implementation, each node maintains a separate Ui works, the number of traffic flows (or traffic destinatipns

for each flow going through it. The queue maintained at no . .
n for flow f is for buffering packets off which reachn. %‘?e usually much larger than the typical number of neighbors

f N 0{ a node. Moreover, the delay performance of the traditiona
Let @y, [t] denote the length of that queue at the beginning 8ack-pressure algorithm can be quite poor, as it is invatsa)
time slott¢. By convention,Qj: n [t] = 0, Vt. The traditional '

i : in the next subsection.
back-pressure algorithm is as follows.

1) Back-pressure scheduling by the network: B. Delay Performances
At time slot¢, In this subsection, we formally characterize the delay per-

« Each link looks at the maximum differential backlog oformance of back-pressure algorithm using number of hops as
all flows going through that link: the metric.

For inelastic traffic, the following theorem establishes an
W [t] = max (Q{;[t] - Q{,'T[t]) . (2) upper-bound on the end-to-end queue backlog for any flow.
Filnm)eL(f) Theorem 1:Consider a general topology network accessed

« Back-pressure scheduling: by a set of flows with fixed routes. LeK,,.., be the
maximum number of hops in the route of any flow, i.e.,

7 [t] = max Z Tnm W [t]. (3) Kumar = maxy |L(f)|. Suppose the arrival rate vectaris

el (n,m) such that, for some > 0, (1 + €)X lies in the interior of

the capacity region of the network. Then, under the back-
pressure scheduling algorithm, the expected value of the su
of queue lengths (in steady-state) along the route of any flow
f is bounded as follows:

« If the scheduler* says, for example, to seng,,, shadow
packets over link(n, m), then link (n,m) transmits up
to c7,,, packets from the queue of the flofig; |, whose
differential backlog achieves the maximum in (2).

. 1\ b
/ i 2
2) Traffic injection at the sources: E Z Qnloo]| < (1 + 6> /\f|]:|Kmam , Ve,

In the case of inelastic traffic, the flow ratg is given to neR(f)
each flowf. At time slott, the source of flowf will generate where constant > 0 depends only om,,, ..
traffic to inject into the network according to its given réfée Proof: The proof is presented in Appendix A. ]
assume that the arrival processes of the flows are independeffror elastic traffic, it has been proven (e.g., in [3]-[7])ttha
of each other, independent from time slot to time slot, arttle above joint congestion control (by the sources) and-back
have finite second moments. pressure (by the network) algorithm asymptotically acksev
In the case of elastic traffic, we assume that each ffowthe optimal solution for the resource allocation problem (1
runs the following well-known congestion control algonith In particular, under this joint congestion control and back
[2]-[7]- (To be precise, the congestion control algorithmatt pressure algorithm, the long term average flow rates would
follows from [3]-[6] is somewhat different from the aboveget close to the optimal flow rates, and the long term average
one, but all results of this paper are valid for such congastiqueue lengths (scaled by/) get close to the corresponding
control as well.) At time slot, the source of flowf computes Lagrange multipliers (see [3], [4]). Thus, one can also ekpe



% // back-pressure algorithm, and at the same time reduces its

implementation complexity.

@ @ @- ''''''''' @—@ We note that the shadow queue concept was introduced in
m m [10], but the main goal there was to extend the network wtilit

maximization framework for wireless networks to include
Fig. 1. The linear network withV links. multicast flows. On the other hand, in this work, we show that
shadow queues can be useful even in networks with unicast
flows only for the purpose of delay reduction. Furthermore,
a similar result as Theorem 1 for elastic traffic, i.e., thilto the idea of using per-neighbor queueing and establishag it
end-to-end queue backlog for any flow is upper-bounded bystability is another important contribution here.
guadratic function of the number of hops.
While the above results are only upper-bounds, the quadrasi Description

growth of total end-to-end queue backlog is turned out to be . , ,
the exact bound in some particular linear-topology network The traditional back-pressure algorithm requires the queu

for both inelastic and elastic traffic, as shown in the nefgndth of every flow that passes through a node to perform
theorem. resource allocation. The idea of the shadow algorithm is to
Theorem 2:Consider a linear network withV links (in- decouple the storage of this information from the queueing

dexedl1 to N) and N +1 flows (indexed) to N) as in Figure 1. gata.IStrL;Ctrl:re r:eguiredl 0 _sr:ore pa(cj:kets.batdeacrf\ Ir|10de. The
Flow 0 goes through allV links, and each of otheN flows etalls of the shadow algorithm are described as follows.

goes through each link. Each link has a unit capacity, anethe ) ,
is no interference between them. Then we have that: Queues and Counters:At each node, instead of keeping a

] ) ] ) separate queue for each flow as in the back-pressure algorith
1) For inelastic traffic, let\; denote the arrival rate of flow 5 £1EG (first-come first-served) queue is maintained for each
i (i =0,...,N). Under the back-pressure algorithm, ify, 15qing link. This FIFO queue stores packets for all flows
Ao > 1/2, then the expected end-to-end queue backleging through the corresponding link. When a node receives
of flow 0 (in steady state) grows at least quadratically i h4cket, it looks at the packet's header: if the node is ret th
N. ) o o ) final destination of that packet, it will send the packet te th
2) For elastic traffic with deterministic arrival rates, @nd g queue of the next-hop link; otherwise, it will delivéxet
the joint back-pressure and congestion control alggrithrﬁacket to the upper layer. We I&,,,[t] denote the length of
the expected end-to-end queue backlog of flowin  he queue maintained at linfa,m) and at the beginning of
steady state) grows at least quadraticallyNin time slott.
Proof: The proof is presented in Appendix B. u Each node maintains a separabadow queue (i.e., a
counter) for each flow going through it. LEX [¢] be the length
of the shadow queue (i.e., the value of the counter) of ffoat
o noden at the beginning of time slat The shadow queues and
A. Motivation real queues are updated according to the scheduling dlgorit

One great advantage of the back-pressure algorithm is tHgscribed next. Note that each node still needs to keep a
it can perform resource allocati@uaptively However, as we Separate shadow queue for every flow going through it, but
have seen in the previous section, the total end-to-endequéliese are just counters, not actual physical queues. A eount
backlog of any flow under back-pressure algorithm is uppdf much easier to implement than a physical queue.
bounded by a quadratic function of the number of hops, and
this bound is tight for some linear network configurationgack-pressure scheduling using the shadow queue lengths:

In particular, let us consider a wireline linear network wit At time slotz,

N links having the same capacity and only one flow going « Each link looks at the maximunshadow differential
through all these links. Then we can show, as a side resuft fro  backlog of all flows going through that link:

the proof of Theorem 2, that the flow will have a quadratic _ _

end-to-end queue backlog under the back-pressure schgduli Wrm [¢] Q1] — Qﬂ[t]) . @
algorithm, as long as its rate is large enough but less than )

the capacity. On the other hand, if a fixed service rate (farge * Back-pressure scheduling:

than the flow’s arrival rate) is allocated to the flow on each

IV. A SCHEME BASED ON THE SHADOW ALGORITHM

= max (
f(n.m)EL(f)

link, then its total end-to-end queue length is expecteddwg ™l = er ChmWnm 1] ®)
only linearly in the number of hops. But can such an allocatio (n.m)

be doneadaptively? The main point of this work is to use a « A scheduler® = (cT,c3, ... ,c"fm) is interpreted by the
fictitious queueing system called teshadow queueingystem network as follows: link(r, m) transmitsc],, shadow

to perform such an allocation in the network adaptively,le/hi packets from the shadow queue of the flow whose dif-

using only a single physical FIFO queue for each outgoing ferential backlog achieves the maximum in (4) (if the
link (also known as per-neighbor queueing) at each node. shadow queue has fewer thafi,, packets, then it is
Therefore, it improves the delay performance of the traddi emptied); link(n, m) also transmits as many real packets



as shadow packets from its real FIFO queue. Again, tib the corresponding shadow queues. This subtle differisnce
the number of real packets in the queue is less than tingportant in that it allows us to use per-neighbor FIFO qgeue
number of transmitted shadow packets, then all the remid prove stability in a multihop wireless network in the nex
packets are transmitted. section.

We recall that shadow queues are just counters. The action of

“transmitting shadow packets” is simply the action of ujtat V. STABILITY OF THE QUEUES (SHADOW AND REAL)
the counters’ values. In other words, “transmittinigshadow UNDER THE SHADOWALGORITHM BASED SCHEME
packets fromQ/ to Q/, means that we subtraétfrom Q/ A. Elastic traffic

and addk to Q7,. From the above description, it should be | this subsection, we will establish (asymptotic) optiityal

clear that the shadow packets can be interpreted as permgiige shadow-algorithm based scheme for elastic flows, and
which allow a_I|nk to transm_lt. Unlike thg traquna_l ,baCk'itsjoint stability of shadow and real queues. First, we htree
pressure algo_rlthm,_ the permits are associated with juistka Ifollowing theorem on the resource allocation’s optimatityd
rather than with a link and a flow. the shadow queuesstability. Its proof follows from [3], [7]

(we remind again that the congestion control that follovesrfr

Injection of elastic traffic (congestion control): At time slot ¢ algorithm in [3] is somewhat different); a related ressil
t, the source of flowf computes the rate at which it injectsyg, proven in [6].

packets into the ingresshadowqueue as follows: Theorem 3:The congestion control and scheduling algo-

o! 1] rithms, controlling shadow queues, as described in Settion
<ﬁ> , Ww} , (6) above, asymptotically achieve the optimal rate allocafmm

xy[t] = min {U}1
shadow traffic, i.e.,

M
wherex,,.., is an upper-bound of the arrival rates, ahflis . 1 =t
a positive parameter. The source also generates real @affic S o > Elzft]] =" +o(1), asM — o0, (7)
rate Sz ¢ [t] whereg is a positive number less thdn =0

Let as[t] and as[t] be the number of real and shadowvhere z* is the optimal solution to (1). Furthermore, the
packets generated and injected to the network at time shadowqueues are stable in the sense that the Markov chain of
respectively. For simplicity, we assume that[t] and as[t] shadow queue@]t] is positive recurrent and the steady-state
are Poisson random variables with medhs andx, inde- expected values of the shadow queue lengths are bounded as
pendent of each other across flows and from time slot to tirfilows: .
slot. Since the shadow packets are permits that allow real- ZE(Q'Q[OO]) = O(M).
packet transmission, from basic queueing theory, it foflow n,f
that the actual packet a_rrival rate must be slightly sr_nalhan The remaining goal is to prove the stability of the real
the shadow packet arrival rate to ensure the stability of reg eyes. Note that the sources are sending real traffic with
queues. The parametgris chosen to be less thanfor this  gmg|ler rates than shadow traffic, and we know that the shadow
purpose. As we will see later in simulations, the queue lmarklgyeyes are stable. However, it does not automatically mean
in the network would be smaller for smaller values/of that the real queues are stable as well, since each of them is

o ) ) . ) ) ] an aggregated FIFO queue storing packets for all flows going
Injection of inelastic traffic: For inelastic traffic, the same through its corresponding link. To the best of our knowledge
shadow algorithm can be used without congestion control. figere is no sample-path relationship between the shadow and
ensure stability of the real queues, if the real arrival m@ite (gg] queueing systems which would allow us to conclude
an inelastic flow is)\;, the shadow arrival rate for this flow stability. Fortunately, we can apply results from the sttt
must be larger than;. For example, if we wish to make networks literature to establish the following result.
the shadow arrival rate larger than the real arrival rate by aTheorem 4 (Elastic traffic)The process describing the
factor of (1 +¢), it can be accomplished as follows: for everypint evolution of shadow and real queues, is an irreducible
real packet arrival, generate a shadow packet. Generateaﬁgriodic, positive recurrent Markov chain.
additional shadow packet for each real packet with proligbil Remark. Note that the complete state of the Markov chain
e. This procedure ensures that the shadow arrival rate will bsferred to in Theorem 4, isot simply
(1 + ¢) times the real arrival rate. For the algorithm to be

(an [t])(n,m)eﬁ) ’

stable, the set of arrival rates\;(1 + €)}; must lie in the ((Qf f
because it also includes the order in which packets of @iffer

interior of capacity region. ol ])fefv"@\w

We note that the concept of shadow queues here is differéypies are placed in each lirle, m) FIFO queue.
from the notion of virtual queues used in [14] for the Intdrne The proof is based on the fluid limit approach and a result
and in [5] for wireless networks. In networks with virtualby Bramson [13]. In his paper, Bramson proved that fluid
gueueing systems, the arrival rates to both the real andavirtmodels of Kelly-type FIFO queueing networks are stable as
gueues are the same, but the virtual queue is drained dbiag as the nominal load on each server is strictly less ttgan i
slower rate than the real queue. Instead, here the arrites recapacity. Thus, the basic idea of the proof is as follows. The
to the real queues are slightly smaller than the arrivalsrateandom process describing the behaviorsbfidowqueues,



T T T
Shadow, long flow —

under the joint congestion control and scheduling algorith 120 - - - -
(running on the shadow system), is positive recurrent (as H oa T
specified in Theorem 3). Therefore, theerageservice rate on 100 [ 8
each networldink that the shadow algorithm yields is strictly
greater than the nominal load of the link due to the thinning s |l .
of actual traffic; moreover, the (random) cumulative amounts
of service provided on each link up to timesatisfies the
functional strong law of large numbers, agjoes to infinity.
As a result, if we take th#uid limit of the process describing wl
real FIFO queues, it haaxactly same form as if each network
link would have constant, non-time-varying capacity (ddaa
the average rate provided by the shadow algorithifihen,
this fluid limit is stable by the results of [13], which impdie
stability of the process of real queues. The proof’s detaits 0 T T T
presented in Appendix C just for the purpose of completeness Node ID

Note that the real traffic throughput will always be slightly _ _ »
smaller than the optimal solution to (1), but this diflerench: % Tne cueue lnaths ot ach node 1 e iear neviofigre 1
from the optimal solution can be made arbitrarily small byow) maintained at each node. The dash-line boxes are thdoshgueue

adjusting the parametet. lengths of flowsi, i = 1,...,80, (the short flows) at nodeé, respectively.
Finally, the dot-line boxes are the real FIFO queue lengthsaah node.

Queue leng
T
T

B. Inelastic traffic

In the case of inelastic traffic, we first note that the stapili
result of shadow queueing system (Theorem 3) is automati-
cally extended, since the back-pressure algorithm isratillon
shadow queues. Next, it can be show that an identical version
of Theorem 4 also holds for inelastic traffic.

Theorem 5 (Inelastic traffic)The process describing the
joint evolution of shadow and real queues, is an irreducible
aperiodic, positive recurrent Markov chain.

Proof: This proof can be easily extracted from the proof
of Theorem 4 (presented in Appendix C) as a side-result, and
hence, is eliminated. |

V1. SIMULATION

In this section, we compare and contrast the performances
of the traditional back-pressure algorithm and the shadow
algorithm for networks with fixed routing.

A. Simulation results for inelastic traffic Fig. 3. A grid network with16 nodes,24 links, and48 flows. Links and
To illustrate the queue length behavior under back-presstlP's e represented by dash lines and solid arrows, réagigct
algorithm in the case of inelastic traffic, we simulate tme&r
network in Figure 1. We choos® = 80, i.e., the network
has81 nodes and0 links, with node-exclusive interference
between links. Each link has capacity, i.e., it can transmit  In this subsection, we investigate the performance of the
up to 10 packets per time slot. Le, be the fixed rate of flow shadow algorithm with elastic traffic in a network with a more
0, and)\; be the fixed rate of flows, 2, ..., 80. We know that complicated topology than a line. In particular, we consiae
the back-pressure algorithm will stabilize the networkasgl grid network as shown in Figure 3. We assume that all flows
as2\o + 2\, < 10. We let the sources send shadow traffic dtave a logarithmic utility function, i.el/;(xy) = logx; for
fixed rates);, and send real traffic at a slightly smaller ratell f. The network had6 nodes (represented by circles) and
BAi, with 5 € (0,1). 24 links (represented by dash lines). We again assume the
Figure 2 shows the mean queue lengths of all queuesde-exclusive interference model under which a matching
maintained at each node whegy = 2.0 and \; = 2.6. The in the graph represents a valid schedule. Each link has an
value of 8 here is0.99. We see that the shadow queue lengthsnit capacity, i.e., it can transmit one packet per time lot
of flow 0 increase linearly when going from the end node to thecheduled. There ars flows (represented by arrows) sharing
begin node, which leads to a quadratic growth (in terms of tileis network.
number of hops) of the end-to-end queue backlog. MoreoverWe implement the shadow algorithm as described in Sec-
we also see that the real FIFO queue lengths are significarithn 1V with the parametetd = 20. In Figure 4, we plot
reduced, even with a small amount thinning of traffi€?{. the evolution of total shadow queue length and total real
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Fig. 4. The evolutions of total shadow queue length and tatal queue Fig. 5.

The evolutions of total shadow queue length and tatal queue
lengths over time with\/ = 20 and with different values aof for the network

lengths over time with\/ = 10 and with different values of for the network
in Figure 3. in Figure 3.

Node | Shadow Real, Real, Real,
gueue length for several values of paramététhe total queue ndex 8-099 | B=097 | §=095
length is the sum of all queue lengths in the network). Note — i —
that the shadow queue length is also the queue length of O | 123356| 22489 55.85 33.07
the traditional back-pressure scheduling without the shad 1 | 1762.18| 349.17 83.87 46.05
algorithm. The figure indicates that the total real queugtlen 2 1223.52| 236.47 67.09 38.70
with the shadow algorithm decreases dramatically compared 3 616.27 | 114.90 20.56 15.25
to the t_raditional back-pres_sure a_Igorithm (although ket 4 | 176327| 336.61 8524 51.07
Ionggr time to converge to its stationary value, Wh!Ch can be = | 201784] 5508 14279 104
considered as a disadvantage of the shadow algorithm)., Thus
significant gains in performance can be realized at the esgoen 6 | 1497.36) 43715 12444 55.93
of a small loss in throughput (represented by the parameter 7 | 77054 | 131.43 35.08 20.89
1 — /). Note that the traditional back-pressure algorithm can 8 | 1222.21| 216.61 68.44 40.66
perform poorly due to many reasons: (i) As in Section Il14B, i 9 1496.89| 319.48 121.09 63.02
the qumber of hops fqr a floyy is large, t.hen the queue backlog 10 | 97549 | 28741 90.49 5427
can increase qgadrahcally. (ii) The choice of the paramefe 11 | 231711 9934 2472 14.90

in the congestion control algorithm (Equation (6)) can lead

to queue backlogs of the order @ (see the upper bound 12 | 61739 | 8527 2731 1651
in Theorem 3 and another simulation result running in the 13 | 77128 | 14224 | 4153 2441
same network withA/ = 10 in Figure 5; more results on 14 | 23214 | 8255 29.18 14.10
this relation can be found in [5]). (iii) A separate queue is 15 0 0 0 0
maintained for each destination. The shadow algorithmesolv

. . TABLE |
all of these problems at once by “reserving” capacity betwegr-nope QUEUE LENGTHS WITHM = 20 AND DIFFERENT VALUES OF 3
each source-destination pair, i.e., for each flow.

It might be interesting to know how these total queue lengths
spread over nodes/flows/links in the network. Particu)ary
are interested in the per-node queue lengths in this casm si

for the node-exclusive interference model they will giveai f to right, and then from top to bottom, starting with index
comparison between the traditional back-pressure ahgorit for the node in the top-left corner, and ending with indéx
and the shadow algorithm. Recall that the shadow quei@s the node at the bottom-right corner.) We can see that as
length is also the queue length of the traditional backsues decreases, the real queue length decreasisrmly at every
scheduling without the shadow algorithm. Then we defiféode, not just some particular nodes.

the total shadow queue length at a node as the sum of alWe now turn our attention to the trade-off between through-
shadow queues maintained for all flows going through thatit optimality and delay performance of the shadow algorith
node. Similarly, the total real queue length at a node is the particular, we are interested in how the total network
sum of all real queues maintained for all neighbors of thatility of real traffic and the totakeal queue lengtlat steady
node. Table | gives the values of per-node total queue Isngttate vary with different values of and M. For each pair

at steady statdor the grid network in Figure 3 with/ =20 of (5, M), let Q(8, M) and U (3, M) denote the total real
and different values ofi. (The nodes are indexed from leftqueue length at steady state and the total achieved network

FOR THE NETWORK INFIGURE 3.



r(8,M) | Q8 M)
B =0.95 M =10 | 2.2089% 413.2
B =0.97, M =10 | 1.2960% 744.4
B =0.99, M =10 | 0.4273% 2477.5
B =0.95 M =20 | 2.1886% 579.1
B =0.97, M =20 | 1.2848% 1046.3
B =0.99, M =20 | 0.3912% 3494.9
B =0.95 M =50 | 2.1127% 1809.2
B =0.97, M =50 | 1.2076% 3267.8
B =0.99, M =50 | 0.3314% | 10180.1

TABLE I

THE VALUES OF (3, M) AND Q(f8, M) WITH DIFFERENT VALUES OFf3
AND M FOR THE NETWORK INFIGURE 3.

utility of real traffic at steady state, respectively. Alset, U*

denote the theoretical maximum network utility. Then thtora
%SB’M) can be used to evaluate the throughput

r(B, M) =

optimality for real traffic for each{s, M).

Table 1l shows the values @j(3, M) and the percentage of P
r(8, M) for the same grid network in Figure 3 with different up,[t]

values of and M. Intuitively, as/3 or M increasesy (8, M)
should become smaller (i.e., the total network utility ieser

to its optimal value) and) (5, M) should respectively become Ay [¢]

large. The results from Table Il confirm this fact.

VII. CONCLUSIONS

In this paper, we have proposed a new shadow architecture
to improve the delay performance of back-pressure schegluli
algorithm. The shadow queueing system allows each node
to maintain a single FIFO queues for each of its outgoing
links, instead of keeping a separate queue for each flow in tRecall thatrm;,,(f.,)[t] = Tour(fn—1)[t] —

o n — 1 denote the previous node af in the route of f
(n #b(f)).
For eachn € R(f), let us define

Tout(f,n) [t] = W{n7n+1)[t] , nF e(f),
L [t] — af[t] n= b(.f)a
T BT min {wf, L .QA L b0,

where ay[t] is the number of external arrivals of flow at
time ¢t. The queue dynamics are then given by

Qlt+1]= (] -
Now, consider the Lyapunov function

_ZZQf

fEF neR(f)

+
Tout(f,n) [t]) =+ Tin(f,n) [t] (8)

We can rewrite the queues’ dynamics (8) as follows:

Qult+1] = QL] uf[t],
where

— Tout(f,n) [t] + Tin(s.n) [t] +

— { 0 ) if Q’fl[t] > Tout(f,n) [t]v
_sz [t] + 7.rout(f,n) [t] if sz[t] < 7Tout(f,n) [t]

The drift of the Lyapunov function is given by

= E[VQl+1) - V@il f)
= —Z 3" E[2Q41] (Tin(rm) (1] — Tout(rm [1])
FEF neR(f)

+ (Tin(rm) [t] = Tout(r,m) [t ])2

network. This architecture not only reduces the queue backiThus, we get

(or, equivalently, delay by Little’s law) but also reducde t
number of actual physical queues that each node hasqa/

maintain.

We presented the shadow algorithm for the case of fixed
the route for each flow is fixed. The shadow
algorithm can also be used in the case of adaptive routing,
but a node cannot use just one FIFO queue for each neighbor.
If one still maintains a separate queue for each destinaiion
each node, then the extension of the shadow algorithm to the
case of adaptive routing is straightforward. On the othadha

routing, i.e.,

+ 2uf [ [t] + (ul )
+ 2ufz[t] (sz[ ] — Tout(f,n) t])’ Q ]
ul 1 [t], n # b(f).
B t]+ ZQg(f)[t]/\f
feF
=S (@ - QL) E [, 1] Q1]
fEF (n,m)EL(f)
= Biltl+ Y Qjplt
feF
— T max i —of +
3 o] s, (@200 =40

it would be interesting to study if a single per-neighbor GIF where the last equality is due to the back-pressure scheguli
gueue can be maintained even in the case of adaptive routigigorithm, and

This is an interesting topic for future research.

APPENDIXA
PROOF OFTHEOREM 1

Recall thatL(f) is the set of links forming the route of

Bi[t] =

DY

FEF neR(f)

+ (uf )" - 2u}_,[1QLIH
+ 2u7]§[t] (Qvﬁ[t] + 7Tin(f,n) [t] - 7T0ut (fym) )’ Q }

|: Tin(f,n) ] — Tout(f,n) [t])2

flow f. Now, we letR(f) denote the set of nodes forming the

route of f (and hence|R(f)| = |L(f)| + 1). For each pair
(f,n) such thatr € R(f), we abuse the notation by letting

« n+ 1 denote the next node of in the route off (n #

e(f));

Since is strictly inside the regior\, there exist a positive
constante and a vector of link rateg such that

Hnm 2 (1+€) Z /\fv
fi:(n,m)eL(f)

and p € co(T).



And hence,

DoQuplay = >

fer feF (n,m)eL(f)

+
Z Mnmf . m)eL (Qf[ ] er;[t])

(n m)eL

Ar QL = QL)

Therefore,
AV[t] < Bilt]
- Z (Thm[t] = Hnm)

(n, m)GE

(czf[ ] -

max
fi(n,m)EL(f

,
> st max, (QA - QL)

(n m)eL
Now, for any flow f € F, we have that

> Qhl < (@A -

neR(f)

< [R(S)]

+
QJL[t])
(n,m)eL(f)

~Qul)”

IN

Q% [t)"

o @nl =

where iz ¢y > 0 is the minimum link ratey,,, of any link

which is part of the flow’s route; obviously,. sy > Ay. Thus,

for any flow f € F,

AV <

Balt] -

> Qi (9

neR(f)
Note that By [t] < b|F|Kas, VE, for some constant > 0

1+€Kmaz

which depends only of,,.. (see model definition). Thus, [QO[ ] —

from (9), we have thaty f € F,
€ Af

AV < e — —— f
0 < WFIK e — e D @A)
neR(f)
AV[l] S bl'}—'Kma;E— Z Q
€ Af
AVIT —-1] < -4 I —1].
e B D DI /A
neR(f)

Taking expectation on both sides of those inequalities,-sum

ming and rearranging the terms yield

ST

neR(f)
1+ eb|F|K 1+ € Kmax

mam Vol -E[V|T
e s S B
1+ eb|lFIK2,, 1+¢€KnaVI[0]
€ /\f € T/\f ’

where the last inequality is due to the fact that) is non-
negative. Sincd’[0] is finite, we then obtain that/f € F,

hmsup—ZE[ Z nyl[t]] < Lre b|

T—o00 nER(f)

| max-®

QLI

The above bound along with the positive recurrence)@f
gives the desired result.

APPENDIXB
PROOF OFTHEOREM 2

1) For inelastic traffic:

This result for inelastic traffic has been shown in [15]
(Proposition 2), for a continuous-time model. The proof in
our discrete-time setting is essentially same — we pregent i
here for completeness.

Let Q? [t] denote the length of the queue maintained at node
4 for flow 0 at the beginning of time slat Since there is no
interference between links, under the back-pressureitigor
if a packet of flow0 is transmitted over link during time slot
t, then necessarilg?[t] > Q9. [t].

Suppose thaf9[k] > QY. | [k] — 1 at timek. Then we have
that Q9[t] > QOH[] — 1 for all t > k. This is easily seen
by |nduct|on on time: if the condition holds &t then under
back-pressure rule it must hold &t 1 as well. The Markov
process is recurrent, in particular it reaches “empty’estatith
all queues being zero) with probability 1. We conlude that in
the stationary regimeQ?[oc] > QY [cc] — 1 holds for all ;.

Next, note that in steady state,

P (QI[cc] > QY4y[o0]) > Noy  j=1,2,...,N,
because the average rate of flow O frgnto j + 1 is exactly
Ao, and the condmoni)0 > QY j+1 Is necessary for a packet to
be passed fronj to j + 1. Therefore

.(7?+1 [OOH

1-P (QY[o0] > QY [oc])

+ (1) - P (QY[o0] < QY14[00])
= 2P (Qf[o0] > QF1[0o0]) — 1
> 2\ — 1.

Y

Note that by convention,_, [k] = 0, Vk > 0. Therefore,

E[QN[x]] > (2x0—1)
E[Q%_i[c0]] > 2(2X\—1)
E[Q)[]] > N(2Xo - 1),

and
al N(N +1)
S E[QVc]] = — 20 - D),
1=1

which is quadratic as long a§ > 1/2.

2) For elastic traffic:

Letz; andU;(-) denote the rate and the utility function flow
1, respectively. Then the network utility maximization preiul
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(2) for the linear network in Figure 1 becomes: other words, we will use the notatiart for the e-approximate
optimal solution.

N
max ZUi(xi) From the above result, the following (strong law of large
= numbers) results can be established. B
St xo < po,u, Lemma 1:Suppose a (non-random) initial stag[0] of
o . shadow queues is fixed. For every fl
Hoi < fojit1s t=1,..., N =1, d o y fighe .
. - | = 1 «
i+ poi < ¢, i=1,..., N, Thm Tzaf[t] = pa} a.s., (11)
where ; is the resource that link allocates to serve flow i
0. i.e., the time average of real packet arrival rate convetges

If the utility is logarithmic (proportional fairness), i,e the optimal rates (for the elastic flows) scaled fy
Ui(xz) = log(x), then one can easily compute the optimdfor every linkl € L,

rates and optimal queue lengths (which are the Lagrange T—1
multipliers) for the above optimization problem as follows Tlgréo T Z i [t] = wp a.s. (12)
* * * c =0
To=Hor == HoN = N for somey* such that > o} < uj, Vi€ L.
= S Nc 7 FAer(f)
N El—kl In other words, the average service rates “provided” by

the shadow algorithm on all links are not smaller than the

“nominal loads” of the link due to the optimal rates (for the
whereg; andgg ; are the optimal queue lengths maintained &fjastic flows).

node: for flow ¢ and flow0, respectively. Then, the end-to-end Proof: Let us prove (11). Consider any flov. Let

total queue backlog for flow is us consider the proces®)[t],a;[t]),t > 0, where Q[t] is
N Ni1 & (N +1)2 the vector of all shadow queues at timeThis process is
qui = - = 0 (NQ) , a countable irreducible ergodic Markov chain. (Ergodicity
i Ne o 2c follows from that of theQ[-]-component.) Pick any fixed state

i.e., it grows quadratically inv. as a regeneration point, and denotelyyand A, the random

For a more general class of utility functions which model guration of a regeneration cycle and the random number of
large class of fairness concepts [16] flow f packets generated during a cycle, respectively. Since
’ the process is ergodi® [Ty] < oo. Therefore, by the key

11—«

Uix) = 2 a>0, renewal theorem,
e EIAS] _ o il — Ba®
we still have similar results: E [T}] = Am las[t] = B,
Ty =poq == po N =© (N—l/a) , which by the way implie€E [Af] < co. Using the strong law
o= =% = () of large numbers for the sequence of regeneration cycles, we
I=...=ay= ,

obtain lemma statement whé&hincreases along the sequence
4 =40, — 90,41 = ©O(1), i=1,...,N, of regeneration points, which easily implies that it has atdh
: : N . for just T — oo as well. The proof of (12) is analogous®
which again lead t§_;_, 5,; = © (N?). TJo be consistent with [135), we int(rod)uce the goncept of
packet classEach flow f consists of|L(f)| packet classes;
each class going through one link in the routefofVe letS
denote the set of all packet classes. In other words, theae is
In this appendix, we provide details of the proof of Thebijection mapping a paitf,l), f € F, 1 € L(f), to a packet
orem 4. The proof uses thituid limit technique [17]-[20], classs € S. Clearly, S| = e |L(f)].
which is by now standard. For this reason, we focus on theFor each flowf € F, let @(f) be the set of packet classes
details specific to our problem, while referring the reader belonging tof. For each linki € £, let C(l) be the set of

APPENDIXC
PROOF OFTHEOREM4

the above references for standard arguments. packet classes going through Conversely, for each packet
classs € S, let f(s) be the corresponding flow (i.es, €
A. Preliminaries ®(f(s))), andi(s) be the corresponding link.

Recall the result from Theorem 3 that Let H denote theconstituency matrixvith size |£| x |S]:

= ., - { 1 ifse Q(l),
lim T Z E[l’[t]] — " (6), (10) 0 otherwise.
o3 Also, let R be therouting matrixwith size|S| x |S|:
wherez*(¢) is within e-boundary of the optimal solution* 1 if f(s) = f(u) andu is the next hop
and ¢ can be made arbitrarily small by increasidg. To Rs. = of s in the route off,

simplify the notations, from now on, we will dragin z*(¢). In 0 otherwise.
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Next, let E4(t) denote the total number @xternalarrivals Now, recall that the real queues are served in FIFO manner,
of packet class up to timet. Thus, which implies the following equation:

$(0) 4+ As(t) € [Ds (t+ 0,06 ()=) , Dy (t + 506 (1))],

B — | doaslkl i sis thefirst hop off(s), Q:(0) + A:() € [Ds (¢4 1y () ) Dt + “)())222)

= where 6,(t) denotes the smallest numbgr> 0 such that

M (t+y)—M;(t) > P,(t). (In other wordsg,(¢) is an inverse
Also, we define the arrival rates corresponding to packet M;(t + -) — M;(t), taken at pointP(t).)

classes: We now describe thdluid modelof the system. (To be

precise, this is a fluid modehssuming the initial state of

O_ otherwise.

As = { gw-f Ic]:trfelfwtizz first hop off (s), shadow queues is fixedthis will be enough for our purposes.)
' The set of fluid model equations is as follows:
We then extend the definition df,(¢) to continuous time -~ T
as follows: for each time € R, E () := E, ([t]). Hence, A(t) = pXt + R D(t) (23)
E,(t) is right continuous having left limits. Q(t) = ( +A(t) - D(t) (24)
Recall thatr*[t] is the outcome of the scheduling algorithm P(t) = HQ(t) (25)
at time slot¢. Now, for eacht € RT, we let M(t) = HD(t) + I(t) = p*t (26)
[t]—1 _ _
M, ([t]) = > 52, m/[k] denote the total amount of offered I(t) can only increase wheR,(1) = 0, L € £ (27)
service (in terms of number of packets tikah betransmitted)
of |II_’1k_l up to tlmet._ _ D, ’( ®) | = Q,(0) + Ay(t), (28)
Similarly, let us defined(t) = A (|¢]) as the total arrivals, Hi(s)

and lzs(? :th”(]LtJ) as the total departures, of packet CIaS\%/here all involved functions are Lipschitz continuous arids
§ up to timet. Thus, defined in Lemma 1 as the set of achieved link rates. Equation

Ay(t) = Ey(t) + Z Dy ()R s. (13) (2?) means that for each > 0, wheneverPl(t). > 0, the.re
existsd > 0 such thatl;(t + ) = I;(t — 9), i.e., I;(-) is

constant in(t — §,t + 4).
Let Qs(t) = Qs (|t]) be the number of packets of packet

classs which are waiting to be served. Then,

uesS

B. Definition of the Markov process
Qs(t) = Qs(0) + As(t) — Ds(2). (14)  The state of the system at timteis formally defined as
_ (S(t),Q(t)), whereQ(t) is the state of all shadow queues
: Recall thatP() = P ([¢]) is the length of FIFO queue, as defined earlier, and(¢) is the state of all real queues,
i.e., the current workload at linkat time¢. Thus,
including the order of packet types in each queue. (Note that
Z Qs(t) = ZHz,st(t)- (15) (Q(t),Q(t)) is uniquely determined byS(t),Q(t)).) Given
seC(l) s our model assumptions, this is an irreducible aperiodickidar
] chain. Stability is ergodicity of this chain. Using the fact
Now, we definel;(t) as the amount unused offered servicgpat \we already know that the shadow queue pro@@@
measured in number of packets, at linkiuring [0,]. Then s ergodic, we will consider a different representation e t
we have the following equations: system process, which is also an irreducible aperiodic blark

chain, whose ergodicity is equivalent to that (&f(¢), Q(t)).
ZHZ «Da(t) + Li(t) = Mi(t), (16) Namely, let us fix an arbitrary fixed sta€@,. of( trse) shrgld)z)w
process, for example “empty” state. Consider this state as
and the fact thaf; (t) can only increase wheR;(t) < cmaz = a regeneration point (of shadow process). A time interval
maxz ¢, i.e., if I;(t2) > Li(t1) then P(t) < cmao for some  petween two consecutive “visits” of stafg... is a regeneration
t € [t1,ta]. cycle. Suppose the system evolution process is constructed

We can rewrite the above equations (13)-(16) in vect@y the following way. If Q(t) reaches stat€)., at time ¢,
form to get the following set of equations which describege entire realizatiorE of the shadow process until the next
the evolution of the system: regeneration point; is randomly drawn (from the given fixed
distribution of a regeneration cycle). So, given this rzatibn

T
A(t) = E(t) + R*D(t) (17) =, the evolution of process froip to ¢; depends on the state
Q(t) = Q(0) + A(t) — D(t) (18)  S(ty) of real queues aty, and on (random) realization of
P(t) = HQ(t) (19) the real arrival process iftg,t;] (which also depends oB).
D(t) + I(t) = M(t) (20) The duration of= we denote byr(Z), and we know that

E7(E) < co. An alternative definition of the process is

= >
Note that £, (£), My(t). Au(t). Du(t). Qu(t). Pi(1), and (520, =0
I;(t) are all right continuous having left limits. We also camwhereZ(¢) in the regeneration-cycle realization the shadow
and will use the convention that(0) = D(0) = I(0) = 0. process is “currently in” £(¢) only changes at regeneration

Il( ) can only increase wheR,(t) < ¢z, [ € L. (21)
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points), andt(¢) is the residual time of the current cyclé({) Lemma 3:Suppose, there exists integdf > 0 such
decreases by 1 in each time slot, until it reacheat which that the following holds. For any sequence of processes
point a new cycle realization is drawn afds reset to new (S (-),Z()(.),£()(.)), indexed byr increasing to infinity,
cycle duration.) Clearly, we always have< £(t) < 7(Z(t)), with the initial state normj|(S)(0),=)(0),£M(0))[ < r,
and conditior¢ () = 7(Z(t)) indicates that is a regeneration and with7(Z(")(0)) = £(7(0) (i.e., time 0 being a regenera-
point. tion point),

ProcesgS(-),Z(+),£(+)) is an irreducible aperiodic Markov 1||(Q(r)(rT)” o (30)
chain. Since shadow process reaches spatefrom any other r
state within finite average time, the ergodicity f(-), Q(-)) Then the Markov procestS(-),Z(-),£(-)) is positive recur-

is equivalent to that ofS(-), =(+),£(+)), and from now on we rent.

can focus on the latter. Thus, it will suffice to demonstrate that conditions of
Lemma 3 hold. Let us define
C. Proof, using fluid limit technique X)) = (AP (@), D(M), QM(t), I (1)), (31)

In the rest of the paper, we use the notatlerto denote the for all realt > 0 using conventionX (t) = X (|¢]). Al

convergencein probabilityg.q.q.rgfers to uniform on compact component processes have been defined earlier; supefsgript
sets convergence of deterministic vector-functions. Veg{|us g simply the index of a process from the sequence defined in
to denote the,-norm of a vector; we will abuse this notation s mma 3 statement.

by writing [|(S(2),2(¢),£())[| to mean|[(Q()]| + T(=(t)), Consider the corresponding sequence of scaled processes
which is the total number of real packets plus the duration of 1
the current regeneration cycle. Note that, since in our mode X"(t)==X"(rt), t > 0. (32)

r

the service rates on all links are uniformly bounded, thaltot

number of all possible realizations & with a fixed finite All processesX (") (¢) and X (¢) are in the Skorohod space

duration7 (=) is finite. This in particular implies that for any of right-continuous functions having left limits. Then wave

numberr, the number of states with norff(S,=,¢)|| < ris the following result:

finite. Lemma 4:With probability 1 (i.e. for almost any outcome
The following lemma follows from more general results irof the probability space), any subsequence of sequénge

[21] for discrete time countable Markov chains. (In the forrhas in turn another subsequence, along which

(29), the stability condition was derived in [17] foontinuous . SN (TN PN AN T

time countable Markov chains.) X (_) = X() = (A0), D(), (), I()), uoe,  (33)
Lemma 2:Suppose, there exists integdf > 0 such where X(-) is a deterministicfluid model solution(namely

that the following holds. For any sequence of proa set of Lipschitz continuous functions, satisfying (228)),

cesses(S()(-), 2 (), £ () with the initial state norm with [|Q(0)[| < 1.

(S (0),2(0),£(0))|| = r increasing to infinity, Proof: From Lemma 1 we obtain the following functional

strong law of large numbers properties of the exogenousarri

lim E F (ST (rT), 27 (rT), €0 (TT))H} =0. (29) and link service processes. With probability 1,
—00 r
1
= . L im —EM(¢) =
Then the Markov proces§S(-), Z(+),&(+)) is positive recur- Tli{{)lo TE (t) = Bt u.o.c,
rent.

. . i ) —
Using standard arguments (cf. [17]-[20]), along with the );H;o ;Mz (t) =t u.o.c.

—

facts thatE [7(Z)] < oo and that all real packet exo0genoug-,r each outcome of the probability space, satisfying twweab
input processes are uniformly stochastically bounded by g itions, it remains to choose a converging subsequertte a

Poisson process with finite rate, it is easy to see that the fajp,, essentially just to take the limit in (17)-(22). We omit
ily of random variables || (S (+T), 2 (rT), €V (D)) s gyrther details, which are standard. []
uniformly integrable (for anyr’). Also, by the definition of i .o mains to establish the following:

the process, for any the first regeneration point is reached at | o ;yma 5: There existl” > 0 such that for any fluid model
the deterministic time (™) (0) which is at mostr(Z("(0)) < solution X (-) with [|Q(0)]| < 1

[1(S™)(0),2((0),£(0))|| = r. After the first regeneration N -

point is reached, the consequent regeneration cycle dogati R =0, vt=T.

are i.i.d. (again by the process definition) with finite meian; | emma 5 is true by Bramson’s result [13], because our

particular, using .t.he functional ;trong law of large “Um;be'équations (23)-(28) are same (up to a natural rescaling of
for the sums of i.i.d. cycle durations, we see that, under tgyiaples) as the fluid model equations for a Kelly network

conditions of Lemma 2, studied in [13]. This completes the proof of Theorem 4.
1
(=) L
TT(H (rT)) =0, vI'>1L ACKNOWLEDGMENTS
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