
1

A Novel Architecture for Reduction of Delay and
Queueing Structure Complexity in the

Back-pressure Algorithm
Loc Bui, R. Srikant, Alexander Stolyar

Abstract—The back-pressure algorithm is a well-known
throughput-optimal algorithm. However, its implementation re-
quires that each node has to maintain a separate queue for each
commodity in the network, and only one queue is served at a
time. This fact may lead to a poor delay performance even when
the traffic load is not close to network capacity. Also, sincethe
number of commodities in the network is usually very large, the
queueing data structure has to be maintained at each node is
respectively complex. In this paper, we present a solution to
address both of the above issues in the case offixed-routing
network scenario where the route of each flow is chosen upon
arrival. Our proposed architecture allows each node to maintain
only per-neighbor queues, and moreover, improves the delay
performance of the back-pressure algorithm.

I. I NTRODUCTION

Resource allocation in wireless networks is complicated
due to the shared nature of wireless medium. One particular
allocation algorithm called theback-pressure algorithmwhich
encompasses several layers of the protocol stack from MAC
to routing was proposed by Tassiulas and Ephremides, in
their seminal paper [1]. The back-pressure algorithm was
shown to be throughput-optimal, i.e., it can support any
arrival rate vector which is supportable by any other resource
allocation algorithm. Recently, it was shown that the back-
pressure algorithm can be combined with congestion controlto
fairly allocate resources among competing users in a wireless
network [2]–[7], thus providing a complete resource allocation
solution from the transport layer to the MAC layer. While such
a combined algorithm can be used to perform a large variety
of resource allocation tasks, in this paper, we will concentrate
on its application to routing and scheduling only.

Even though the back-pressure algorithm delivers maximum
throughput by adapting itself to network conditions, thereare
several issues that have to be addressed before it can be
widely deployed in practice. As stated in the original paper
[1], the back-pressure algorithm requires centralized informa-
tion and computation, and its computational complexity is
too prohibitive for practice. Much progress has been made
recently in easing the computational complexity and deriving

An earlier version of this work was presented at the IEEE INFOCOM
Conference, Rio de Janeiro, Brazil, April 2009.

L. Bui is with Department of Management Science and Engineering,
Stanford University, Stanford, CA 94305, USA (e-mail: locbui@stanford.edu).

R. Srikant is with Department of Electrical and Computer Engineering
and Coordinated Science Lab, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA (e-mail: rsrikant@illinois.edu).

A. Stolyar is with Bell Labs, Alcacel-Lucent, Murray Hill, NJ 07974, USA
(e-mail: stolyar@research.bell-labs.com).

decentralized heuristics. We refer the interested reader to [8],
[9] and references within for some recent results along these
lines. We do not consider complexity or decentralization issues
in this paper; our proposed solutions can be approximated well
by the solutions suggested in the above papers.

Besides complexity and decentralization issues which have
received much attention recently, the back-pressure algorithm
can also have poor delay performance. To understand that,
let us consider thefixed-routingscenario where the route for
each flow is chosen upon arrival by some standard multi-hop
wireless network routing algorithm such as DSR or AODV
and the back-pressure algorithm is simply used to schedule
packets. In operation, the back-pressure algorithm assigns a
weight to each flow on each link. The weight is equal to
the flow’s queue backlog at the transmitter of the link minus
the flow’s queue backlog at the receiver. The weight of a
link is equal to the maximum weight of any flow that uses
the link. The back-pressure algorithm then selects a schedule
which maximizes the sum of the weights of the links included
in the schedule. Under such an algorithm, for a link to be
scheduled, its weight should be slightly larger than zero. Now,
we consider a flow that traversesK links, and use an informal
argument to show why it is very intuitive that the flow’s total
queue accumulation along its route should grow quadratically
with the route length. The queue length at the destination
for this flow is equal to zero. The queue length at the first
upstream node from the destination will be some positive
number, say,ǫ. The queue length at the second upstream node
from the destination will be even larger and for the purposes
of obtaining insight, let us say that it is2ǫ. Continuing this
reasoning further, the total queue length for the flow will be
ǫ(1+2+ . . .+K) = Θ(K2). Thus, the total backlog on a path
is intuitively expected to grow quadratically in the number
of hops. On the other hand, suppose a fixed service rate is
allocated to each flow on each link on its path, then the queue
length at each hop will be roughlyO(1) depending on the
utilization at that link. With such a fixed service rate allocation,
the total end-to-end backlog should then grow linearly in the
number of hops. However, such an allocation is possible only
if the packet arrival rate generated by each flow is known to
the network a priori. One of the contributions of this paper
is to use counters calledshadow queuesintroduced in [10] to
allocate service rates to each flow on each link in an adaptive
fashion without knowing the set of packet arrival rates.

We will also show that the concept of shadow queues can
reduce the number of real queues maintained at each node sig-

2

nificantly. Notice that in the case of fixed-routing, it is natural
to implement back-pressure algorithm using per-flow queues,
but it is also possible to implement it using per-destination
queues. In other words, the traditional back-pressure algorithm
requires either per-flow or per-destination queues. We will
show that it is sufficient to maintain onlyper-neighborqueues
at each node, instead of per-flow or per-destination queues
required by the traditional back-pressure algorithm. In large
networks, the number of flows (or destinations) is typically
much larger compared to the number of neighbors of each
node, thus using per-neighbor queues can result in significant
reduction in implementation complexity.

An attempt to reduce the number of queues using clustering
architecture was proposed in [11]. However, in [11], per-
destination queues are still maintained at each node, one for
each destination cluster and one for each node within its
own cluster. Clustering also requires additional communication
between clusters to ensure stability. Theshadow queueing
architecture in this paper is fundamentally different fromthat
clustering approach: first, it allowsper-neighborqueues to be
maintained at each node, which leads to a drastic reduction in
the number of real data queues to be implemented; and second,
it has the additional benefit of delay reduction. The reader is
also referred to [12] in which the authors tried to reduce delay
of back-pressure algorithm by considering a simplified, sub-
optimal version of the network utility maximization problem.

In summary, the main contributions of this paper are as
follows:

• We present the disadvantages of back-pressure algorithm
in the aspects of number of queues and delay perfor-
mance. We formally characterize the delay performance
of back-pressure algorithm using the number of hops as
the metric. In particular, we show that, under the back-
pressure algorithm, the worst-case total queueing backlog
for any flow scales quadratically in its number of hops.
(Section III.)

• We then propose theshadow queueingarchitecture to
address those disadvantages of back-pressure algorithm.
This architecture is twofold: first, it allows each node
to maintain only per-neighbor FIFO queues instead of
per-flow queues required by the back-pressure algorithm,
and hence, reduces its implementation complexity; sec-
ond, it significantly improves the delay performance of
traditional back-pressure algorithm with a small cost of
throughput degradation. (Section IV.)

• We establish the stabilities of both shadow and real
queueing systems. The stability result for real queues
are not obvious due to the fact that now each node
maintains only per-neighbor FIFO queues. Because of
the radically different architectures of real queues and
shadow queues, to the best of our knowledge, there is
no sample-path relationship between them which would
allow us to conclude stability. We show that the stability is
possible because of its connection to Bramson’s stability
result for FIFO queues [13]. (Section V.)

• We then present extensive simulation results to show
significant improvements on delay performance of the
proposed shadow queueing architecture. Although we

cannot provide any analytical result, the simulation results
confirm our intuition of its delay reduction from quadratic
to linear (in terms of the number of hops). (Section VI.)

II. SYSTEM MODEL

Let us consider a network modeled by a graph,G = (N ,L),
whereN is the set of nodes andL is the set of links. We
assume that time is slotted, with a typical time slot denoted
by t. If a link (n,m) is in L, then it is possible to transmit
packets from noden to nodem subject to the interference
constraints which will be described shortly. We will use both
notations(n,m) and l interchangeably to indicate a network
link.

We let F be the set of flows that share the network
resources. Packets of each flow enter the network at one node,
travel along multiple hops, and then exit the network at another
node. In this paper, we only consider thefixed routingscenario,
i.e., the route of each flow is pre-determined and fixed during
the time of interest. For eachf ∈ F , let L(f) denote the set
of links forming the route off, and let:

• first(f) ∈ L(f) be the firstlink on the route off ;
• last(f) ∈ L(f) be the lastlink on the route off ;
• b(f) ∈ N be the begin (entering) node, i.e.,b(f) belongs

to first(f); and,
• e(f) ∈ N be the end (exiting) node, i.e.,e(f) belongs to

last(f).

Also, for each pair(f, l) wherel ∈ L(f), let us define:

• next(f, l) ∈ L(f) as the link afterl in the route off if
l 6= last(f); and,

• prev(f, l) ∈ L(f) be the link beforel in the route off
if l 6= first(f).

We define a valid scheduleπ =
(

cπ1 , c
π
2 , . . . , c

π
|L|

)

to be
a set of link rates (measured in terms of number of packets)
that can be simultaneously supported. Note that due to the
interference between links, for eachπ, somecπl could be zero.
Moreover, we make a natural and nonrestrictive assumption
that if π is a valid schedule, then if we replace any subset
of its components by zeros, the modified schedule is valid as
well. We also assume thatcπl is upper-bounded by somecmax

for anyπ andl. LetΓ be the set of all possible valid schedules,
andco(Γ) denote the convex hull ofΓ.

LetΛ denote the network’scapacity region, which is defined
as the set of all flow rates that are supportable by the network,
given the set of flows and their corresponding routes. In
particular,λ = {λf}f∈F ∈ Λ if there exists aµ = {µl}l∈L

such that:

• λf ≤ µfirst(f), ∀f ∈ F , and,
• µl ≤ µnext(f,l), ∀f ∈ F , l ∈ L(f), l 6= last(f), and,
• µ ∈ co(Γ).

The traffic in the network can beelasticor inelastic. If the
traffic is inelastic, i.e., the flows’ rates are fixed (and within
the capacity region), then the goal is to route/schedule the
traffic through the network while ensuring that the queues in
the network are stable. If the traffic iselastic, then the goal
is to allocate the network’s resources to all flows in some fair
manner. More precisely, suppose that each flow has a utility

3

function associated with it. The utility function of flowf,
denoted byUf (·), is defined as a function of the data ratexf

sent by flowf, and assumed to be concave and nondecreasing.
The goal, in the case of elastic traffic, is to determine the
optimal solution to the following resource allocation problem:

max
∑

f∈F

Uf (xf) (1)

s.t. x ∈ Λ,

whereΛ is thecapacity regiondescribed above.

III. T RADITIONAL BACK-PRESSUREALGORITHM

A. Description and Drawbacks

We now describe the traditional back-pressure algorithm,
which was first proposed in [1]. As we mentioned earlier, one
can implement the traditional back-pressure algorithm using
either per-flow or per-destination queues in the fixed-routing
scenario. However, for the sake of simplicity, we will consider
the per-flow implementation only from now on. In the per-
flow implementation, each node maintains a separate queue
for each flow going through it. The queue maintained at node
n for flow f is for buffering packets off which reachn.
Let Qf

n[t] denote the length of that queue at the beginning of
time slot t. By convention,Qf

e(f)[t] = 0, ∀t. The traditional
back-pressure algorithm is as follows.

1) Back-pressure scheduling by the network:
At time slot t,

• Each link looks at the maximum differential backlog of
all flows going through that link:

wnm[t] = max
f :(n,m)∈L(f)

(

Qf
n[t]−Qf

m[t]
)

. (2)

• Back-pressure scheduling:

π∗[t] = max
π∈Γ

∑

(n,m)

πnmwnm[t]. (3)

• If the scheduleπ∗ says, for example, to sendcπnm shadow
packets over link(n,m), then link (n,m) transmits up
to cπnm packets from the queue of the flowf∗t

(n,m) whose
differential backlog achieves the maximum in (2).

2) Traffic injection at the sources:
In the case of inelastic traffic, the flow rateλf is given to

each flowf. At time slot t, the source of flowf will generate
traffic to inject into the network according to its given rate. We
assume that the arrival processes of the flows are independent
of each other, independent from time slot to time slot, and
have finite second moments.

In the case of elastic traffic, we assume that each flowf
runs the following well-known congestion control algorithm
[2]–[7]. (To be precise, the congestion control algorithm that
follows from [3]–[6] is somewhat different from the above
one, but all results of this paper are valid for such congestion
control as well.) At time slott, the source of flowf computes

the rate at which it injects packets into the ingress queue as
follows:

xf [t] = min

{

U
′−1
f

(

Qf
b(f)[t]

M

)

, xmax

}

,

wherexmax is an upper-bound of the arrival rates, andM
is a positive parameter. We again assume that, conditioned
on the rate vector calculated by the above congestion control
algorithm, the arrival processes of the flows are independent
of each other, independent from time slot to time slot, and
have finite second moments.

It has been shown in [1] that, for inelastic traffic, the
traditional back-pressure algorithm isthroughput-optimal. Fur-
thermore, for elastic traffic, the authors in [2]–[7] have shown
that this algorithm, jointly with the above congestion control
algorithm, can solve the optimal resource allocation problem
(1). However, the traditional back-pressure algorithm has
several major drawbacks. Its first drawback is the fact that
it requires per-flow (per-destination) queues. This fact affects
the scalability of the algorithm, since in large communication
networks, the number of traffic flows (or traffic destinations)
are usually much larger than the typical number of neighbors
of a node. Moreover, the delay performance of the traditional
back-pressure algorithm can be quite poor, as it is investigated
in the next subsection.

B. Delay Performances

In this subsection, we formally characterize the delay per-
formance of back-pressure algorithm using number of hops as
the metric.

For inelastic traffic, the following theorem establishes an
upper-bound on the end-to-end queue backlog for any flow.

Theorem 1:Consider a general topology network accessed
by a set of flows with fixed routes. LetKmax be the
maximum number of hops in the route of any flow, i.e.,
Kmax = maxf |L(f)|. Suppose the arrival rate vectorλ is
such that, for someǫ > 0, (1 + ǫ)λ lies in the interior of
the capacity region of the network. Then, under the back-
pressure scheduling algorithm, the expected value of the sum
of queue lengths (in steady-state) along the route of any flow
f is bounded as follows:

E





∑

n∈R(f)

Qf
n[∞]



 ≤

(

1 +
1

ǫ

)

b

λf
|F|K2

max , ∀f ∈ F ,

where constantb > 0 depends only oncmax.
Proof: The proof is presented in Appendix A.

For elastic traffic, it has been proven (e.g., in [3]–[7]) that
the above joint congestion control (by the sources) and back-
pressure (by the network) algorithm asymptotically achieves
the optimal solution for the resource allocation problem (1).
In particular, under this joint congestion control and back-
pressure algorithm, the long term average flow rates would
get close to the optimal flow rates, and the long term average
queue lengths (scaled byM) get close to the corresponding
Lagrange multipliers (see [3], [4]). Thus, one can also expect

4

F l o w 0

F l o w 1 F l o w 2 F l o w N

1 2 3 N N + 1

Fig. 1. The linear network withN links.

a similar result as Theorem 1 for elastic traffic, i.e., the total
end-to-end queue backlog for any flow is upper-bounded by a
quadratic function of the number of hops.

While the above results are only upper-bounds, the quadratic
growth of total end-to-end queue backlog is turned out to be
the exact bound in some particular linear-topology networks
for both inelastic and elastic traffic, as shown in the next
theorem.

Theorem 2:Consider a linear network withN links (in-
dexed1 toN) andN+1 flows (indexed0 toN) as in Figure 1.
Flow 0 goes through allN links, and each of otherN flows
goes through each link. Each link has a unit capacity, and there
is no interference between them. Then we have that:

1) For inelastic traffic, letλi denote the arrival rate of flow
i (i = 0, . . . , N). Under the back-pressure algorithm, if
λ0 > 1/2, then the expected end-to-end queue backlog
of flow 0 (in steady state) grows at least quadratically in
N .

2) For elastic traffic with deterministic arrival rates, under
the joint back-pressure and congestion control algorithm,
the expected end-to-end queue backlog of flow0 (in
steady state) grows at least quadratically inN .

Proof: The proof is presented in Appendix B.

IV. A SCHEME BASED ON THESHADOW ALGORITHM

A. Motivation

One great advantage of the back-pressure algorithm is that
it can perform resource allocationadaptively. However, as we
have seen in the previous section, the total end-to-end queue
backlog of any flow under back-pressure algorithm is upper-
bounded by a quadratic function of the number of hops, and
this bound is tight for some linear network configurations.
In particular, let us consider a wireline linear network with
N links having the same capacity and only one flow going
through all these links. Then we can show, as a side result from
the proof of Theorem 2, that the flow will have a quadratic
end-to-end queue backlog under the back-pressure scheduling
algorithm, as long as its rate is large enough but less than
the capacity. On the other hand, if a fixed service rate (larger
than the flow’s arrival rate) is allocated to the flow on each
link, then its total end-to-end queue length is expected to grow
only linearly in the number of hops. But can such an allocation
be doneadaptively? The main point of this work is to use a
fictitious queueing system called theshadow queueingsystem
to perform such an allocation in the network adaptively, while
using only a single physical FIFO queue for each outgoing
link (also known as per-neighbor queueing) at each node.
Therefore, it improves the delay performance of the traditional

back-pressure algorithm, and at the same time reduces its
implementation complexity.

We note that the shadow queue concept was introduced in
[10], but the main goal there was to extend the network utility
maximization framework for wireless networks to include
multicast flows. On the other hand, in this work, we show that
shadow queues can be useful even in networks with unicast
flows only for the purpose of delay reduction. Furthermore,
the idea of using per-neighbor queueing and establishing its
stability is another important contribution here.

B. Description

The traditional back-pressure algorithm requires the queue
length of every flow that passes through a node to perform
resource allocation. The idea of the shadow algorithm is to
decouple the storage of this information from the queueing
data structure required to store packets at each node. The
details of the shadow algorithm are described as follows.

Queues and Counters:At each node, instead of keeping a
separate queue for each flow as in the back-pressure algorithm,
a FIFO (first-come first-served) queue is maintained for each
outgoing link. This FIFO queue stores packets for all flows
going through the corresponding link. When a node receives
a packet, it looks at the packet’s header: if the node is not the
final destination of that packet, it will send the packet to the
FIFO queue of the next-hop link; otherwise, it will deliver the
packet to the upper layer. We letPnm[t] denote the length of
the queue maintained at link(n,m) and at the beginning of
time slot t.

Each node maintains a separateshadow queue (i.e., a
counter) for each flow going through it. Let̃Qf

n[t] be the length
of the shadow queue (i.e., the value of the counter) of flowf at
noden at the beginning of time slott. The shadow queues and
real queues are updated according to the scheduling algorithm
described next. Note that each node still needs to keep a
separate shadow queue for every flow going through it, but
these are just counters, not actual physical queues. A counter
is much easier to implement than a physical queue.

Back-pressure scheduling using the shadow queue lengths:
At time slot t,

• Each link looks at the maximumshadow differential
backlog of all flows going through that link:

wnm[t] = max
f :(n,m)∈L(f)

(

Q̃f
n[t]− Q̃f

m[t]
)

. (4)

• Back-pressure scheduling:

π∗[t] = max
π∈Γ

∑

(n,m)

cπnmwnm[t]. (5)

• A scheduleπ∗ = (cπ1 , c
π
2 , . . . , c

π
|L|) is interpreted by the

network as follows: link(n,m) transmitscπnm shadow
packets from the shadow queue of the flow whose dif-
ferential backlog achieves the maximum in (4) (if the
shadow queue has fewer thancπnm packets, then it is
emptied); link(n,m) also transmits as many real packets

5

as shadow packets from its real FIFO queue. Again, if
the number of real packets in the queue is less than the
number of transmitted shadow packets, then all the real
packets are transmitted.

We recall that shadow queues are just counters. The action of
“transmitting shadow packets” is simply the action of updating
the counters’ values. In other words, “transmitting”k shadow
packets fromQ̃f

n to Q̃f
m means that we subtractk from Q̃f

n

and addk to Q̃f
m. From the above description, it should be

clear that the shadow packets can be interpreted as permits
which allow a link to transmit. Unlike the traditional back-
pressure algorithm, the permits are associated with just a link
rather than with a link and a flow.

Injection of elastic traffic (congestion control): At time slot
t, the source of flowf computes the rate at which it injects
packets into the ingressshadowqueue as follows:

xf [t] = min

{

U
′−1
f

(

Q̃f
b(f)[t]

M

)

, xmax

}

, (6)

wherexmax is an upper-bound of the arrival rates, andM is
a positive parameter. The source also generates real trafficat
rateβxf [t] whereβ is a positive number less than1.

Let af [t] and ãf [t] be the number of real and shadow
packets generated and injected to the network at timet,
respectively. For simplicity, we assume thataf [t] and ãf [t]
are Poisson random variables with meansβxf andxf , inde-
pendent of each other across flows and from time slot to time
slot. Since the shadow packets are permits that allow real-
packet transmission, from basic queueing theory, it follows
that the actual packet arrival rate must be slightly smallerthan
the shadow packet arrival rate to ensure the stability of real
queues. The parameterβ is chosen to be less than1 for this
purpose. As we will see later in simulations, the queue backlog
in the network would be smaller for smaller values ofβ.

Injection of inelastic traffic: For inelastic traffic, the same
shadow algorithm can be used without congestion control. To
ensure stability of the real queues, if the real arrival rateof
an inelastic flow isλf , the shadow arrival rate for this flow
must be larger thanλf . For example, if we wish to make
the shadow arrival rate larger than the real arrival rate by a
factor of (1+ ǫ), it can be accomplished as follows: for every
real packet arrival, generate a shadow packet. Generate an
additional shadow packet for each real packet with probability
ǫ. This procedure ensures that the shadow arrival rate will be
(1 + ǫ) times the real arrival rate. For the algorithm to be
stable, the set of arrival rates{λf (1 + ǫ)}f must lie in the
interior of capacity region.

We note that the concept of shadow queues here is different
from the notion of virtual queues used in [14] for the Internet
and in [5] for wireless networks. In networks with virtual
queueing systems, the arrival rates to both the real and virtual
queues are the same, but the virtual queue is drained at a
slower rate than the real queue. Instead, here the arrival rates
to the real queues are slightly smaller than the arrival rates

to the corresponding shadow queues. This subtle differenceis
important in that it allows us to use per-neighbor FIFO queues
and prove stability in a multihop wireless network in the next
section.

V. STABILITY OF THE QUEUES (SHADOW AND REAL)
UNDER THE SHADOW-ALGORITHM BASED SCHEME

A. Elastic traffic

In this subsection, we will establish (asymptotic) optimality
of the shadow-algorithm based scheme for elastic flows, and
its joint stability of shadow and real queues. First, we havethe
following theorem on the resource allocation’s optimalityand
the shadow queues’stability. Its proof follows from [3], [7]
(we remind again that the congestion control that follows from
the algorithm in [3] is somewhat different); a related result is
also proven in [6].

Theorem 3:The congestion control and scheduling algo-
rithms, controlling shadow queues, as described in SectionIV
above, asymptotically achieve the optimal rate allocationfor
shadow traffic, i.e.,

lim
T→∞

1

T

T−1
∑

t=0

E[x[t]] = x∗ + o(1), asM → ∞, (7)

where x∗ is the optimal solution to (1). Furthermore, the
shadowqueues are stable in the sense that the Markov chain of
shadow queues̃Q[t] is positive recurrent and the steady-state
expected values of the shadow queue lengths are bounded as
follows:

∑

n,f

E(Q̃f
n[∞]) = O(M).

The remaining goal is to prove the stability of the real
queues. Note that the sources are sending real traffic with
smaller rates than shadow traffic, and we know that the shadow
queues are stable. However, it does not automatically mean
that the real queues are stable as well, since each of them is
an aggregated FIFO queue storing packets for all flows going
through its corresponding link. To the best of our knowledge,
there is no sample-path relationship between the shadow and
real queueing systems which would allow us to conclude
stability. Fortunately, we can apply results from the stochastic
networks literature to establish the following result.

Theorem 4 (Elastic traffic):The process describing the
joint evolution of shadow and real queues, is an irreducible,
aperiodic, positive recurrent Markov chain.

Remark. Note that the complete state of the Markov chain
referred to in Theorem 4, isnot simply

(

(

Q̃f
n[t]
)

f∈F ,n∈N
; (Pnm[t])(n,m)∈L

)

,

because it also includes the order in which packets of different
types are placed in each link(n,m) FIFO queue.

The proof is based on the fluid limit approach and a result
by Bramson [13]. In his paper, Bramson proved that fluid
models of Kelly-type FIFO queueing networks are stable as
long as the nominal load on each server is strictly less than its
capacity. Thus, the basic idea of the proof is as follows. The
random process describing the behavior ofshadowqueues,

6

under the joint congestion control and scheduling algorithm
(running on the shadow system), is positive recurrent (as
specified in Theorem 3). Therefore, theaverageservice rate on
each networklink that the shadow algorithm yields is strictly
greater than the nominal load of the link due to the thinning
of actual traffic; moreover, the (random) cumulative amount
of service provided on each link up to timet satisfies the
functional strong law of large numbers, ast goes to infinity.
As a result, if we take thefluid limit of the process describing
real FIFO queues, it hasexactly same form as if each network
link would have constant, non-time-varying capacity (equal to
the average rate provided by the shadow algorithm). Then,
this fluid limit is stable by the results of [13], which implies
stability of the process of real queues. The proof’s detailsare
presented in Appendix C just for the purpose of completeness.

Note that the real traffic throughput will always be slightly
smaller than the optimal solution to (1), but this difference
from the optimal solution can be made arbitrarily small by
adjusting the parameterβ.

B. Inelastic traffic

In the case of inelastic traffic, we first note that the stability
result of shadow queueing system (Theorem 3) is automati-
cally extended, since the back-pressure algorithm is stillrun on
shadow queues. Next, it can be show that an identical version
of Theorem 4 also holds for inelastic traffic.

Theorem 5 (Inelastic traffic):The process describing the
joint evolution of shadow and real queues, is an irreducible,
aperiodic, positive recurrent Markov chain.

Proof: This proof can be easily extracted from the proof
of Theorem 4 (presented in Appendix C) as a side-result, and
hence, is eliminated.

VI. SIMULATION

In this section, we compare and contrast the performances
of the traditional back-pressure algorithm and the shadow
algorithm for networks with fixed routing.

A. Simulation results for inelastic traffic

To illustrate the queue length behavior under back-pressure
algorithm in the case of inelastic traffic, we simulate the linear
network in Figure 1. We chooseN = 80, i.e., the network
has81 nodes and80 links, with node-exclusive interference
between links. Each link has capacity10, i.e., it can transmit
up to10 packets per time slot. Letλ0 be the fixed rate of flow
0, andλ1 be the fixed rate of flows1, 2, . . . , 80. We know that
the back-pressure algorithm will stabilize the network as long
as2λ0 + 2λ1 < 10. We let the sources send shadow traffic at
fixed ratesλi, and send real traffic at a slightly smaller rate
βλi, with β ∈ (0, 1).

Figure 2 shows the mean queue lengths of all queues
maintained at each node whenλ0 = 2.0 andλ1 = 2.6. The
value ofβ here is0.99. We see that the shadow queue lengths
of flow 0 increase linearly when going from the end node to the
begin node, which leads to a quadratic growth (in terms of the
number of hops) of the end-to-end queue backlog. Moreover,
we also see that the real FIFO queue lengths are significantly
reduced, even with a small amount thinning of traffic (1%).

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60 70 80

Q
ue

ue
 le

ng
th

Node ID

Shadow, long flow
Shadow, short flow

Real

Fig. 2. The queue lengths at each node in the linear network inFigure 1.
The solid-line boxes are the lengths of shadow queues of flow0 (the long
flow) maintained at each node. The dash-line boxes are the shadow queue
lengths of flowsi, i = 1, . . . , 80, (the short flows) at nodei, respectively.
Finally, the dot-line boxes are the real FIFO queue lengths at each node.

Fig. 3. A grid network with16 nodes,24 links, and48 flows. Links and
flows are represented by dash lines and solid arrows, respectively.

B. Simulation results for elastic traffic

In this subsection, we investigate the performance of the
shadow algorithm with elastic traffic in a network with a more
complicated topology than a line. In particular, we consider a
grid network as shown in Figure 3. We assume that all flows
have a logarithmic utility function, i.e.,Uf(xf) = log xf for
all f. The network has16 nodes (represented by circles) and
24 links (represented by dash lines). We again assume the
node-exclusive interference model under which a matching
in the graph represents a valid schedule. Each link has an
unit capacity, i.e., it can transmit one packet per time slotif
scheduled. There are48 flows (represented by arrows) sharing
this network.

We implement the shadow algorithm as described in Sec-
tion IV with the parameterM = 20. In Figure 4, we plot
the evolution of total shadow queue length and total real

7

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

T
ot

al
 q

ue
ue

 le
ng

th

Time

Shadow
Real, \beta = 0.99
Real, \beta = 0.97
Real, \beta = 0.95

Fig. 4. The evolutions of total shadow queue length and totalreal queue
lengths over time withM = 20 and with different values ofβ for the network
in Figure 3.

queue length for several values of parameterβ (the total queue
length is the sum of all queue lengths in the network). Note
that the shadow queue length is also the queue length of
the traditional back-pressure scheduling without the shadow
algorithm. The figure indicates that the total real queue length
with the shadow algorithm decreases dramatically compared
to the traditional back-pressure algorithm (although it takes
longer time to converge to its stationary value, which can be
considered as a disadvantage of the shadow algorithm). Thus,
significant gains in performance can be realized at the expense
of a small loss in throughput (represented by the parameter
1 − β). Note that the traditional back-pressure algorithm can
perform poorly due to many reasons: (i) As in Section III-B, if
the number of hops for a flow is large, then the queue backlog
can increase quadratically. (ii) The choice of the parameter M
in the congestion control algorithm (Equation (6)) can lead
to queue backlogs of the order ofM (see the upper bound
in Theorem 3 and another simulation result running in the
same network withM = 10 in Figure 5; more results on
this relation can be found in [5]). (iii) A separate queue is
maintained for each destination. The shadow algorithm solves
all of these problems at once by “reserving” capacity between
each source-destination pair, i.e., for each flow.

It might be interesting to know how these total queue lengths
spread over nodes/flows/links in the network. Particularly, we
are interested in the per-node queue lengths in this case, since
for the node-exclusive interference model they will give a fair
comparison between the traditional back-pressure algorithm
and the shadow algorithm. Recall that the shadow queue
length is also the queue length of the traditional back-pressure
scheduling without the shadow algorithm. Then we define
the total shadow queue length at a node as the sum of all
shadow queues maintained for all flows going through that
node. Similarly, the total real queue length at a node is the
sum of all real queues maintained for all neighbors of that
node. Table I gives the values of per-node total queue lengths
at steady statefor the grid network in Figure 3 withM = 20
and different values ofβ. (The nodes are indexed from left

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

T
ot

al
 q

ue
ue

 le
ng

th

Time

Shadow
Real, \beta = 0.99
Real, \beta = 0.97
Real, \beta = 0.95

Fig. 5. The evolutions of total shadow queue length and totalreal queue
lengths over time withM = 10 and with different values ofβ for the network
in Figure 3.

Node Shadow Real, Real, Real,

Index β = 0.99 β = 0.97 β = 0.95

0 1233.56 224.89 55.85 33.07

1 1762.18 349.17 83.87 46.05

2 1223.52 236.47 67.09 38.70

3 616.27 114.90 29.56 15.25

4 1763.27 336.61 85.24 51.07

5 2017.84 455.68 142.79 71.04

6 1497.36 437.15 124.44 55.93

7 770.54 131.43 35.08 20.89

8 1222.21 216.61 68.44 40.66

9 1496.89 319.48 121.09 63.02

10 975.49 287.41 90.49 54.27

11 231.71 99.34 24.72 14.90

12 617.39 85.27 27.31 16.51

13 771.28 142.24 41.53 24.41

14 232.14 82.55 29.18 14.10

15 0 0 0 0

TABLE I
PER-NODE QUEUE LENGTHS WITHM = 20 AND DIFFERENT VALUES OFβ

FOR THE NETWORK INFIGURE 3.

to right, and then from top to bottom, starting with index0
for the node in the top-left corner, and ending with index15
for the node at the bottom-right corner.) We can see that asβ
decreases, the real queue length decreasesuniformly at every
node, not just some particular nodes.

We now turn our attention to the trade-off between through-
put optimality and delay performance of the shadow algorithm.
In particular, we are interested in how the total network
utility of real traffic and the totalreal queue lengthat steady
state vary with different values ofβ and M. For each pair
of (β,M), let Q(β,M) and U(β,M) denote the total real
queue length at steady state and the total achieved network

8

r(β,M) Q(β,M)

β = 0.95, M = 10 2.2089% 413.2

β = 0.97, M = 10 1.2960% 744.4

β = 0.99, M = 10 0.4273% 2477.5

β = 0.95, M = 20 2.1886% 579.1

β = 0.97, M = 20 1.2848% 1046.3

β = 0.99, M = 20 0.3912% 3494.9

β = 0.95, M = 50 2.1127% 1809.2

β = 0.97, M = 50 1.2076% 3267.8

β = 0.99, M = 50 0.3314% 10180.1

TABLE II
THE VALUES OFr(β,M) AND Q(β,M) WITH DIFFERENT VALUES OFβ

AND M FOR THE NETWORK INFIGURE 3.

utility of real traffic at steady state, respectively. Also,let U∗

denote the theoretical maximum network utility. Then the ratio
r(β,M) := U∗−U(β,M)

U∗
can be used to evaluate the throughput

optimality for real traffic for each(β,M).
Table II shows the values ofQ(β,M) and the percentage of

r(β,M) for the same grid network in Figure 3 with different
values ofβ andM. Intuitively, asβ or M increases,r(β,M)
should become smaller (i.e., the total network utility is closer
to its optimal value) andQ(β,M) should respectively become
large. The results from Table II confirm this fact.

VII. C ONCLUSIONS

In this paper, we have proposed a new shadow architecture
to improve the delay performance of back-pressure scheduling
algorithm. The shadow queueing system allows each node
to maintain a single FIFO queues for each of its outgoing
links, instead of keeping a separate queue for each flow in the
network. This architecture not only reduces the queue backlog
(or, equivalently, delay by Little’s law) but also reduces the
number of actual physical queues that each node has to
maintain.

We presented the shadow algorithm for the case of fixed
routing, i.e., the route for each flow is fixed. The shadow
algorithm can also be used in the case of adaptive routing,
but a node cannot use just one FIFO queue for each neighbor.
If one still maintains a separate queue for each destinationat
each node, then the extension of the shadow algorithm to the
case of adaptive routing is straightforward. On the other hand,
it would be interesting to study if a single per-neighbor FIFO
queue can be maintained even in the case of adaptive routing.
This is an interesting topic for future research.

APPENDIX A
PROOF OFTHEOREM 1

Recall thatL(f) is the set of links forming the route of
flow f. Now, we letR(f) denote the set of nodes forming the
route of f (and hence,|R(f)| = |L(f)| + 1). For each pair
(f, n) such thatn ∈ R(f), we abuse the notation by letting

• n+ 1 denote the next node ofn in the route off (n 6=
e(f));

• n − 1 denote the previous node ofn in the route off
(n 6= b(f)).

For eachn ∈ R(f), let us define

πout(f,n)[t] := πf
(n,n+1)[t] , n 6= e(f),

πin(f,n)[t] :=

{

af [t], n = b(f),

min
{

πf
(n−1,n)[t], Q

f
n−1[t]

}

, n 6= b(f),

whereaf [t] is the number of external arrivals of flowf at
time t. The queue dynamics are then given by

Qf
n[t+ 1] =

(

Qf
n[t]− πout(f,n)[t]

)+
+ πin(f,n)[t]. (8)

Now, consider the Lyapunov function

V (Q) =
1

2

∑

f∈F

∑

n∈R(f)

(Qf
n)

2.

We can rewrite the queues’ dynamics (8) as follows:

Qf
n[t+ 1] = Qf

n[t]− πout(f,n)[t] + πin(f,n)[t] + uf
n[t],

where

uf
n[t] =

{

0 if Qf
n[t] ≥ πout(f,n)[t],

−Qf
n[t] + πout(f,n)[t] if Qf

n[t] < πout(f,n)[t].

The drift of the Lyapunov function is given by

∆V [t] := E [V (Q[t+ 1])− V (Q[t])|Q[t]]

=
1

2

∑

f∈F

∑

n∈R(f)

E
[

2Qf
n[t]

(

πin(f,n)[t]− πout(f,n)[t]
)

+
(

πin(f,n)[t]− πout(f,n)[t]
)2

+ 2uf
n[t]πin(f,n)[t] +

(

uf
n[t]
)2

+ 2uf
n[t]

(

Qf
n[t]− πout(f,n)[t]

)∣

∣Q[t]
]

.

Recall thatπin(f,n)[t] = πout(f,n−1)[t] − uf
n−1[t], n 6= b(f).

Thus, we get

∆V [t] = B1[t] +
∑

f∈F

Qf
b(f)[t]λf

−
∑

f∈F

∑

(n,m)∈L(f)

(

Qf
n[t]−Qf

m[t]
)

E
[

πf
nm[t]

∣

∣Q[t]
]

= B1[t] +
∑

f∈F

Qf
b(f)[t]λf

−
∑

(n,m)∈L

π∗
nm[t] max

f :(n,m)∈L(f)

(

Qf
n[t]−Qf

m[t]
)+

,

where the last equality is due to the back-pressure scheduling
algorithm, and

B1[t] =
1

2

∑

f∈F

∑

n∈R(f)

E

[

(

πin(f,n)[t]− πout(f,n)[t]
)2

+
(

uf
n[t]
)2

− 2uf
n−1[t]Q

f
n[t]

+ 2uf
n[t]

(

Qf
n[t] + πin(f,n)[t]− πout(f,n)[t]

)
∣

∣Q[t]
]

.

Sinceλ is strictly inside the regionΛ, there exist a positive
constantǫ and a vector of link ratesµ such that

µnm ≥ (1 + ǫ)
∑

f :(n,m)∈L(f)

λf , and µ ∈ co(Γ).

9

And hence,

∑

f∈F

Qf
b(f)[t]λf =

∑

f∈F

∑

(n,m)∈L(f)

λf

(

Qf
n[t]−Qf

m[t]
)

≤
1

1 + ǫ

∑

(n,m)∈L

µnm max
f :(n,m)∈L(f)

(

Qf
n[t]−Qf

m[t]
)+

.

Therefore,

∆V [t] ≤ B1[t]

−
∑

(n,m)∈L

(π∗
nm[t]− µnm) max

f :(n,m)∈L(f)

(

Qf
n[t]−Qf

m[t]
)+

−
ǫ

1 + ǫ

∑

(n,m)∈L

µnm max
f :(n,m)∈L(f)

(

Qf
n[t]−Qf

m[t]
)+

.

Now, for any flowf ∈ F , we have that

∑

n∈R(f)

Qf
n[t] ≤ |R(f)|

∑

(n,m)∈L(f)

(

Qf
n[t]−Qf

m[t]
)+

≤ |R(f)|
∑

(n,m)∈L(f)

max
g:(n,m)∈L(g)

(Qg
n[t]−Qg

m[t])
+

≤
Kmax

µL(f)

∑

(n,m)∈L

µnm max
g:(n,m)∈L(g)

(Qg
n[t]−Qg

m[t])+ ,

whereµL(f) > 0 is the minimum link rateµnm of any link
which is part of the flow’s route; obviously,µL(f) ≥ λf . Thus,
for any flow f ∈ F ,

∆V [t] ≤ B1[t]−
ǫ

1 + ǫ

λf

Kmax

∑

n∈R(f)

Qf
n[t]. (9)

Note thatB1[t] ≤ b|F|Kmax, ∀t, for some constantb > 0
which depends only oncmax (see model definition). Thus,
from (9), we have that,∀f ∈ F ,

∆V [0] ≤ b|F|Kmax −
ǫ

1 + ǫ

λf

Kmax

∑

n∈R(f)

Qf
n[0],

∆V [1] ≤ b|F|Kmax −
ǫ

1 + ǫ

λf

Kmax

∑

n∈R(f)

Qf
n[1],

. . .

∆V [T − 1] ≤ b|F|Kmax −
ǫ

1 + ǫ

λf

Kmax

∑

n∈R(f)

Qf
n[T − 1].

Taking expectation on both sides of those inequalities, sum-
ming and rearranging the terms yield

1

T

T−1
∑

t=0

E





∑

n∈R(f)

Qf
n[t]





≤
1 + ǫ

ǫ

b|F|K2
max

λf
+

1 + ǫ

ǫ

Kmax

Tλf
(V [0]− E [V [T]])

≤
1 + ǫ

ǫ

b|F|K2
max

λf
+

1 + ǫ

ǫ

KmaxV [0]

Tλf
,

where the last inequality is due to the fact thatV (·) is non-
negative. SinceV [0] is finite, we then obtain that,∀f ∈ F ,

lim sup
T→∞

1

T

T−1
∑

t=0

E





∑

n∈R(f)

Qf
n[t]



 ≤
1 + ǫ

ǫ

b

λf
|F|K2

max.

The above bound along with the positive recurrence ofQ[t]
gives the desired result.

APPENDIX B
PROOF OFTHEOREM 2

1) For inelastic traffic:
This result for inelastic traffic has been shown in [15]

(Proposition 2), for a continuous-time model. The proof in
our discrete-time setting is essentially same – we present it
here for completeness.

Let Q0
j [t] denote the length of the queue maintained at node

j for flow 0 at the beginning of time slott. Since there is no
interference between links, under the back-pressure algorithm,
if a packet of flow0 is transmitted over linkj during time slot
t, then necessarilyQ0

j [t] > Q0
j+1[t].

Suppose thatQ0
j [k] ≥ Q0

j+1[k]−1 at timek. Then we have
that Q0

j [t] ≥ Q0
j+1[t] − 1 for all t ≥ k. This is easily seen

by induction on time: if the condition holds att, then under
back-pressure rule it must hold att+ 1 as well. The Markov
process is recurrent, in particular it reaches “empty” state (with
all queues being zero) with probability 1. We conlude that in
the stationary regime,Q0

j [∞] ≥ Q0
j+1[∞]− 1 holds for allj.

Next, note that in steady state,

P
(

Q0
j [∞] > Q0

j+1[∞]
)

≥ λ0, j = 1, 2, . . . , N,

because the average rate of flow 0 fromj to j + 1 is exactly
λ0, and the conditionQ0

j > Q0
j+1 is necessary for a packet to

be passed fromj to j + 1. Therefore,

E
[

Q0
j [∞]−Q0

j+1[∞]
]

≥ 1 · P
(

Q0
j [∞] > Q0

j+1[∞]
)

+ (−1) · P
(

Q0
j [∞] ≤ Q0

j+1[∞]
)

= 2P
(

Q0
j [∞] > Q0

j+1[∞]
)

− 1

≥ 2λ0 − 1.

Note that by convention,Q0
N+1[k] = 0, ∀k ≥ 0. Therefore,

E
[

Q0
N [∞]

]

≥ (2λ0 − 1)

E
[

Q0
N−1[∞]

]

≥ 2(2λ0 − 1)

...

E
[

Q0
1[∞]

]

≥ N(2λ0 − 1),

and
N
∑

i=1

E
[

Q0
i [∞]

]

≥
N(N + 1)

2
(2λ0 − 1),

which is quadratic as long asλ0 > 1/2.

2) For elastic traffic:
Let xi andUi(·) denote the rate and the utility function flow

i, respectively. Then the network utility maximization problem

10

(1) for the linear network in Figure 1 becomes:

max

N
∑

i=0

Ui(xi)

s.t. x0 ≤ µ0,1,

µ0,i ≤ µ0,i+1, i = 1, . . . , N − 1,

xi + µ0,i ≤ c, i = 1, . . . , N,

whereµ0,i is the resource that linki allocates to serve flow
0.

If the utility is logarithmic (proportional fairness), i.e.,
Ui(x) = log(x), then one can easily compute the optimal
rates and optimal queue lengths (which are the Lagrange
multipliers) for the above optimization problem as follows:

x∗
0 = µ∗

0,1 = . . . = µ∗
0,N =

c

N + 1
,

x∗
1 = . . . = x∗

N =
Nc

N + 1
,

q∗i = q∗0,i − q∗0,i+1 =
N + 1

Nc
, i = 1, . . . , N,

whereq∗i andq∗0,i are the optimal queue lengths maintained at
nodei for flow i and flow0, respectively. Then, the end-to-end
total queue backlog for flow0 is

N
∑

i=1

q∗0,i =
N + 1

Nc

N
∑

i=1

i =
(N + 1)2

2c
= Θ

(

N2
)

,

i.e., it grows quadratically inN.
For a more general class of utility functions which model a

large class of fairness concepts [16],

Ui(x) =
x1−α

1− α
, α > 0,

we still have similar results:

x∗
0 = µ∗

0,1 = . . . = µ∗
0,N = Θ

(

N−1/α
)

,

x∗
1 = . . . = x∗

N = Θ(1),

q∗i = q∗0,i − q∗0,i+1 = Θ(1), i = 1, . . . , N,

which again lead to
∑N

i=1 q
∗
0,i = Θ

(

N2
)

.

APPENDIX C
PROOF OFTHEOREM 4

In this appendix, we provide details of the proof of The-
orem 4. The proof uses thefluid limit technique [17]–[20],
which is by now standard. For this reason, we focus on the
details specific to our problem, while referring the reader to
the above references for standard arguments.

A. Preliminaries

Recall the result from Theorem 3 that

lim
T→∞

1

T

T−1
∑

t=0

E[x[t]] = x∗(ǫ), (10)

wherex∗(ǫ) is within ǫ-boundary of the optimal solutionx∗

and ǫ can be made arbitrarily small by increasingM. To
simplify the notations, from now on, we will dropǫ in x∗(ǫ). In

other words, we will use the notationx∗ for theǫ-approximate
optimal solution.

From the above result, the following (strong law of large
numbers) results can be established.

Lemma 1:Suppose a (non-random) initial statẽQ[0] of
shadow queues is fixed. For every flowf ∈ F ,

lim
T→∞

1

T

T−1
∑

t=0

af [t] = βx∗
f a.s., (11)

i.e., the time average of real packet arrival rate convergesto
the optimal rates (for the elastic flows) scaled byβ.
For every linkl ∈ L,

lim
T→∞

1

T

T−1
∑

t=0

π∗
l [t] = µ∗

l a.s. (12)

for someµ∗ such that
∑

f :l∈L(f)

x∗
f ≤ µ∗

l , ∀l ∈ L.

In other words, the average service rates “provided” by
the shadow algorithm on all links are not smaller than the
“nominal loads” of the link due to the optimal rates (for the
elastic flows).

Proof: Let us prove (11). Consider any flowf. Let
us consider the process(Q̃[t], af [t]), t ≥ 0, where Q̃[t] is
the vector of all shadow queues at timet. This process is
a countable irreducible ergodic Markov chain. (Ergodicity
follows from that of theQ̃[·]-component.) Pick any fixed state
as a regeneration point, and denote byTf andAf the random
duration of a regeneration cycle and the random number of
flow f packets generated during a cycle, respectively. Since
the process is ergodic,E [Tf] < ∞. Therefore, by the key
renewal theorem,

E [Af]

E [Tf]
= lim

t→∞
E [af [t]] = βx∗

f ,

which by the way impliesE [Af] < ∞. Using the strong law
of large numbers for the sequence of regeneration cycles, we
obtain lemma statement whenT increases along the sequence
of regeneration points, which easily implies that it has to hold
for just T → ∞ as well. The proof of (12) is analogous.

To be consistent with [13], we introduce the concept of
packet class. Each flowf consists of|L(f)| packet classes;
each class going through one link in the route off. We letS
denote the set of all packet classes. In other words, there isa
bijection mapping a pair(f, l), f ∈ F , l ∈ L(f), to a packet
classs ∈ S. Clearly, |S| =

∑

f∈F |L(f)|.
For each flowf ∈ F , let Φ(f) be the set of packet classes

belonging tof. For each linkl ∈ L, let C(l) be the set of
packet classes going throughl. Conversely, for each packet
classs ∈ S, let f(s) be the corresponding flow (i.e.,s ∈
Φ(f(s))), and l(s) be the corresponding link.

Let H denote theconstituency matrixwith size |L| × |S|:

Hl,s =

{

1 if s ∈ C(l),
0 otherwise.

Also, let R be therouting matrixwith size |S| × |S|:

Rs,u =







1 if f(s) = f(u) andu is the next hop
of s in the route off,

0 otherwise.

11

Next, letEs(t) denote the total number ofexternalarrivals
of packet classs up to timet. Thus,

Es(t) =











t−1
∑

k=0

af [k] if s is the first hop off(s),

0 otherwise.

Also, we define the arrival rates corresponding to packet
classes:

λs =

{

βx∗
f if s is the first hop off(s),

0 otherwise.

We then extend the definition ofEs(t) to continuous time
as follows: for each timet ∈ ℜ+, Es(t) := Es (⌊t⌋) . Hence,
Es(t) is right continuous having left limits.

Recall thatπ∗[t] is the outcome of the scheduling algorithm
at time slot t. Now, for eacht ∈ ℜ+, we let Ml(t) :=

Ml (⌊t⌋) =
∑⌊t⌋−1

k=0 π∗
l [k] denote the total amount of offered

service (in terms of number of packets thatcan betransmitted)
of link l up to timet.

Similarly, let us defineAs(t) = As (⌊t⌋) as the total arrivals,
andDs(t) = Ds (⌊t⌋) as the total departures, of packet class
s up to timet. Thus,

As(t) = Es(t) +
∑

u∈S

Du(t)Ru,s. (13)

Let Qs(t) = Qs (⌊t⌋) be the number of packets of packet
classs which are waiting to be served. Then,

Qs(t) = Qs(0) +As(t)−Ds(t). (14)

Recall thatPl(t) = Pl (⌊t⌋) is the length of FIFO queue,
i.e., the current workload at linkl at time t. Thus,

Pl(t) =
∑

s∈C(l)

Qs(t) =
∑

s

Hl,sQs(t). (15)

Now, we defineIl(t) as the amount unused offered service,
measured in number of packets, at linkl during [0, t]. Then
we have the following equations:

∑

s

Hl,sDs(t) + Il(t) = Ml(t), (16)

and the fact thatIl(t) can only increase whenPl(t) < cmax
.
=

maxπ,l c
π
l , i.e., if Il(t2) > Il(t1) thenPl(t) < cmax for some

t ∈ [t1, t2].
We can rewrite the above equations (13)-(16) in vector

form to get the following set of equations which describes
the evolution of the system:

A(t) = E(t) +RTD(t) (17)

Q(t) = Q(0) +A(t) −D(t) (18)

P (t) = HQ(t) (19)

HD(t) + I(t) = M(t) (20)

Il(t) can only increase whenPl(t) < cmax, l ∈ L. (21)

Note thatEs(t), Ml(t), As(t), Ds(t), Qs(t), Pl(t), and
Il(t) are all right continuous having left limits. We also can
and will use the convention thatA(0) = D(0) = I(0) = 0.

Now, recall that the real queues are served in FIFO manner,
which implies the following equation:

Qs(0) +As(t) ∈ [Ds

(

t+ θl(s)(t)−
)

, Ds

(

t+ θl(s)(t)
)

],
(22)

where θl(t) denotes the smallest numbery ≥ 0 such that
Ml(t+y)−Ml(t) ≥ Pl(t). (In other words,θl(t) is an inverse
of Ml(t+ ·)−Ml(t), taken at pointPl(t).)

We now describe thefluid model of the system. (To be
precise, this is a fluid modelassuming the initial state of
shadow queues is fixed– this will be enough for our purposes.)
The set of fluid model equations is as follows:

Ā(t) = βλt+RT D̄(t) (23)

Q̄(t) = Q̄(0) + Ā(t)− D̄(t) (24)

P̄ (t) = HQ̄(t) (25)

HD̄(t) + Ī(t) = µ∗t (26)

Īl(t) can only increase when̄Pl(t) = 0, l ∈ L (27)

D̄s

(

t+
1

µ∗
l(s)

P̄l(s)(t)

)

= Q̄s(0) + Ās(t), (28)

where all involved functions are Lipschitz continuous andµ∗ is
defined in Lemma 1 as the set of achieved link rates. Equation
(27) means that for eacht > 0, wheneverP̄l(t) > 0, there
exists δ > 0 such thatIl(t + δ) = Il(t − δ), i.e., Il(·) is
constant in(t− δ, t+ δ).

B. Definition of the Markov process

The state of the system at timet is formally defined as
(S(t), Q̃(t)), where Q̃(t) is the state of all shadow queues
as defined earlier, andS(t) is the state of all real queues,
including the order of packet types in each queue. (Note that
(Q(t), Q̃(t)) is uniquely determined by(S(t), Q̃(t)).) Given
our model assumptions, this is an irreducible aperiodic Markov
chain. Stability is ergodicity of this chain. Using the fact
that we already know that the shadow queue processQ̃(t)
is ergodic, we will consider a different representation of the
system process, which is also an irreducible aperiodic Markov
chain, whose ergodicity is equivalent to that of(S(t), Q̃(t)).
Namely, let us fix an arbitrary fixed statẽQ∗∗ of the shadow
process, for example “empty” state. Consider this state as
a regeneration point (of shadow process). A time interval
between two consecutive “visits” of statẽQ∗∗ is a regeneration
cycle. Suppose the system evolution process is constructed
in the following way. If Q̃(t) reaches statẽQ∗∗ at time t0,
the entire realizationΞ of the shadow process until the next
regeneration pointt1 is randomly drawn (from the given fixed
distribution of a regeneration cycle). So, given this realization
Ξ, the evolution of process fromt0 to t1 depends on the state
S(t0) of real queues att0, and on (random) realization of
the real arrival process in(t0, t1] (which also depends onΞ).
The duration ofΞ we denote byτ(Ξ), and we know that
Eτ(Ξ) < ∞. An alternative definition of the process is

(S(t),Ξ(t), ξ(t)), t ≥ 0,

whereΞ(t) in the regeneration-cycle realization the shadow
process is “currently in” (Ξ(t) only changes at regeneration

12

points), andξ(t) is the residual time of the current cycle. (ξ(t)
decreases by 1 in each time slot, until it reaches0, at which
point a new cycle realization is drawn andξ is reset to new
cycle duration.) Clearly, we always have1 ≤ ξ(t) ≤ τ(Ξ(t)),
and conditionξ(t) = τ(Ξ(t)) indicates thatt is a regeneration
point.

Process(S(·),Ξ(·), ξ(·)) is an irreducible aperiodic Markov
chain. Since shadow process reaches stateQ̃∗∗ from any other
state within finite average time, the ergodicity of(S(·), Q̃(·))
is equivalent to that of(S(·),Ξ(·), ξ(·)), and from now on we
can focus on the latter.

C. Proof, using fluid limit technique

In the rest of the paper, we use the notation
P
→ to denote the

convergence in probability;u.o.c.refers to uniform on compact
sets convergence of deterministic vector-functions. We use ‖.‖
to denote theL1-norm of a vector; we will abuse this notation
by writing ‖(S(t),Ξ(t), ξ(t))‖ to mean‖(Q(t)‖ + τ(Ξ(t)),
which is the total number of real packets plus the duration of
the current regeneration cycle. Note that, since in our model
the service rates on all links are uniformly bounded, the total
number of all possible realizations ofΞ with a fixed finite
durationτ(Ξ) is finite. This in particular implies that for any
numberr, the number of states with norm‖(S,Ξ, ξ)‖ ≤ r is
finite.

The following lemma follows from more general results in
[21] for discrete time countable Markov chains. (In the form
(29), the stability condition was derived in [17] forcontinuous
time countable Markov chains.)

Lemma 2:Suppose, there exists integerT > 0 such
that the following holds. For any sequence of pro-
cesses(S(r)(·),Ξ(r)(·), ξ(r)(·)) with the initial state norm
‖(S(r)(0),Ξ(r)(0), ξ(r)(0))‖ = r increasing to infinity,

lim
r→∞

E

[

1

r

∥

∥

∥
(S(r)(rT),Ξ(r)(rT), ξ(r)(rT))

∥

∥

∥

]

= 0. (29)

Then the Markov process(S(·),Ξ(·), ξ(·)) is positive recur-
rent.

Using standard arguments (cf. [17]–[20]), along with the
facts thatE [τ(Ξ)] < ∞ and that all real packet exogenous
input processes are uniformly stochastically bounded by a
Poisson process with finite rate, it is easy to see that the fam-
ily of random variables1r‖(S

(r)(rT),Ξ(r)(rT), ξ(r)(rT))‖ is
uniformly integrable (for anyT). Also, by the definition of
the process, for anyr the first regeneration point is reached at
the deterministic timeξ(r)(0) which is at mostτ(Ξ(r)(0)) ≤
‖(S(r)(0),Ξ(r)(0), ξ(r)(0))‖ = r. After the first regeneration
point is reached, the consequent regeneration cycle durations
are i.i.d. (again by the process definition) with finite mean;in
particular, using the functional strong law of large numbers
for the sums of i.i.d. cycle durations, we see that, under the
conditions of Lemma 2,

1

r
τ(Ξ(r)(rT))

P
→ 0, ∀T > 1.

Putting together all these observations, we see that the stability
condition (29) in Lemma 2 can be weakened, namely we
obtain the following fact.

Lemma 3:Suppose, there exists integerT > 0 such
that the following holds. For any sequence of processes
(S(r)(·),Ξ(r)(·), ξ(r)(·)), indexed byr increasing to infinity,
with the initial state norm‖(S(r)(0),Ξ(r)(0), ξ(r)(0))‖ ≤ r,
and with τ(Ξ(r)(0)) = ξ(r)(0) (i.e., time0 being a regenera-
tion point),

1

r
‖(Q(r)(rT)‖

P
→ 0. (30)

Then the Markov process(S(·),Ξ(·), ξ(·)) is positive recur-
rent.

Thus, it will suffice to demonstrate that conditions of
Lemma 3 hold. Let us define

X(r)(t) := (A(r)(t), D((r)t), Q(r)(t), I(r)(t)), (31)

for all real t ≥ 0 using conventionX(t) = X (⌊t⌋). All
component processes have been defined earlier; superscript(r)
is simply the index of a process from the sequence defined in
Lemma 3 statement.

Consider the corresponding sequence of scaled processes

Xr(t) =
1

r
X(r)(rt), t ≥ 0. (32)

All processesX(r)(t) andXr(t) are in the Skorohod space
of right-continuous functions having left limits. Then we have
the following result:

Lemma 4:With probability1 (i.e. for almost any outcome
of the probability space), any subsequence of sequence{r},
has in turn another subsequence, along which

Xr(·) → X̄(·) = (Ā(·), D̄(·), Q̄(·), Ī(·)), u.o.c., (33)

where X̄(·) is a deterministicfluid model solution(namely
a set of Lipschitz continuous functions, satisfying (23)-(28)),
with ‖Q̄(0)‖ ≤ 1.

Proof: From Lemma 1 we obtain the following functional
strong law of large numbers properties of the exogenous arrival
and link service processes. With probability 1,

lim
r→∞

1

r
E(r)(t) = βλt u.o.c.,

lim
r→∞

1

r
M

(r)
l (t) = µ∗

l t u.o.c.

For each outcome of the probability space, satisfying the above
conditions, it remains to choose a converging subsequence and
then essentially just to take the limit in (17)-(22). We omit
further details, which are standard.

It remains to establish the following:
Lemma 5:There existT > 0 such that for any fluid model

solutionX̄(·) with ‖Q̄(0)‖ ≤ 1,

‖Q̄(t)‖ = 0, ∀t ≥ T.

Lemma 5 is true by Bramson’s result [13], because our
equations (23)-(28) are same (up to a natural rescaling of
variables) as the fluid model equations for a Kelly network
studied in [13]. This completes the proof of Theorem 4.

ACKNOWLEDGMENTS

The work of the first two authors has been supported in
part by DTRA Grant HDTRA1-08-1-0016, NSF Grant CNS
07-21286, and Army MURI 2008-01733.

13

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,”IEEE Transactions on Automatic Control,
vol. 37, pp. 1936–1948, December 1992.

[2] X. Lin and N. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” inProceedings of IEEE Conference on Decision and
Control, vol. 2, Paradise Island, Bahamas, December 2004, pp. 1484–
1489.

[3] A. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,”Queueing Systems, vol. 50, no. 4, pp.
401–457, August 2005.

[4] ——, “Greedy primal-dual algorithm for dynamic resourceallocation
in complex networks,”Queueing Systems, vol. 54, no. 3, pp. 203–220,
2006.

[5] A. Eryilmaz and R. Srikant, “Fair resource allocation inwireless
networks using queue-length based scheduling and congestion control,”
in Proceedings of IEEE INFOCOM, vol. 3, Miami, FL, March 2005,
pp. 1794–1803.

[6] ——, “Joint congestion control, routing and MAC for stability and
fairness in wireless networks,”IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1514–1524, August 2006.

[7] M. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic con-
trol for heterogeneous networks,” inProceedings of IEEE INFOCOM,
vol. 3, Miami, FL, March 2005, pp. 1723–1734.

[8] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region
of the greedy maximal scheduling algorithm in multi-hop wireless
networks,” in Proceedings of IEEE INFOCOM, Phoenix, AZ, April
2008, pp. 1103–1111.

[9] U. Akyol, M. Andrews, P. Gupta, J. Hobby, I. Saniee, and A.L. Stolyar,
“Joint scheduling and congestion control in mobile ad-hoc networks,”
in Proceedings of IEEE INFOCOM, Phoenix, AZ, April 2008, pp. 619–
627.

[10] L. Bui, R. Srikant, and A. Stolyar, “Optimal resource allocation for
multicast sessions in multihop wireless networks,”Philosophical Trans-
actions of the Royal Society, Series A, vol. 366, no. 1872, pp. 2059–2074,
June 2008.

[11] L. Ying, R. Srikant, and D. Towsley, “Cluster-based back-pressure
routing algorithm,” in Proceedings of the IEEE INFOCOM, Phoenix,
AZ, April 2008, pp. 484–492.

[12] B. Radunovic, C. Gkantsidis, D. Gunawardena, and P. Key, “Horizon:
Balancing TCP over multiple paths in wireless mesh network,” in
Proceedings of the ACM MobiCom, 2008, pp. 247–258.

[13] M. Bramson, “Convergence to equilibria for fluid modelsof FIFO
queueing networks,”Queueing Systems, vol. 22, no. 1-2, pp. 5–45,
March 1996.

[14] R. J. Gibbens and F. P. Kelly, “Resource pricing and the evolution of
congestion control,”Automatica, vol. 35, pp. 1969–1985, 1999.

[15] A. Stolyar, “Large number of queues in tandem: Scaling properties under
back-pressure algorithm,”Queueing Systems, vol. 67, no. 2, pp. 111–126,
2011.

[16] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 556–
567, October 2000.

[17] S. Rybko and A. Stolyar, “Ergodicity of stochastic processes describing
the operation of open queueing networks,”Problems of Information
Transmission, vol. 28, pp. 199–220, 1992.

[18] J. G. Dai, “On positive Harris recurrence for multiclass queueing
networks: A unified approach via fluid limit models,”Annals of Applied
Probability, pp. 49–77, 1995.

[19] A. Stolyar, “On the stability of multiclass queueing networks: A relaxed
sufficient condition via limiting fluid processes,”Markov Processes and
Related Fields, vol. 1, no. 4, pp. 491–512, 1995.

[20] J. Dai and S. Meyn, “Stability and convergence of moments for
multiclass queueing networks via fluid limit models,”IEEE Transactions
on Automatic Control, vol. 40, pp. 1889–1904, 1995.

[21] V. Malyshev and M. Menshikov, “Ergodicity, continuity, and analyticity
of countable markov chains,”Transactions of Moscow Mathematical
Society, vol. 39, pp. 3–48, 1979.

Loc X. Bui received his B.Eng. degree in Electronics
and Telecommunications from Posts and Telecom-
munications Institute of Technology at Ho Chi Minh
City (PTIT-HCM) in 2003, and his M.S. and Ph.D.
degrees in Electrical and Computer Engineering
from University of Illinois at Urbana-Champaign in
2006 and 2008, respectively. From October 2008 to
March 2010, he was with Airvana Inc., where he was
a Software Engineer and then a Senior Sustaining
Engineer. Since April 2010, he has joined Stanford
University as a Postdoctoral Research Scholar in the

Department of Management Science and Engineering. His research interests
include communication networks, wireless communications, network control
and optimization.

R. Srikant (S ’90-M ’91-SM ’01-F ’06) received
his B.Tech. from the Indian Institute of Technology,
Madras in 1985, his M.S. and Ph.D. from the Uni-
versity of Illinois in 1988 and 1991, respectively,
all in Electrical Engineering. He was a Member
of Technical Staff at AT&T Bell Laboratories from
1991 to 1995. He is currently with the University
of Illinois at Urbana-Champaign, where he is the
Fredric G. and Elizabeth H. Nearing Professor in the
Department of Electrical and Computer Engineering,
and a Research Professor in the Coordinated Science

Lab. He was an associate editor of Automatica, the IEEE Transactions on
Automatic Control, and the IEEE/ACM Transactions on Networking. He has
also served on the editorial boards of special issues of the IEEE Journal on
Selected Areas in Communications and IEEE Transactions on Information
Theory. He was the chair of the 2002 IEEE Computer Communications
Workshop in Santa Fe, NM and a program co-chair of IEEE INFOCOM, 2007.
His research interests include communication networks, stochastic processes,
queueing theory, information theory, and game theory.

Alexander Stolyar is a Distinguished Member
of Technical Staff in the Industrial Mathematics
and Operations Research Department of Bell Labs,
Alcatel-Lucent, Murray Hill, New Jersey. He re-
ceived Ph.D. in Mathematics from the Institute
of Control Sciences, USSR Academy of Science,
Moscow, in 1989. Before joining Bell Labs in
1998, he was with the Institute of Control Sci-
ences (Moscow), Motorola (Arlington Heights, IL)
and AT&T Labs-Research (Murray Hill, NJ). His
research interests are in stochastic processes, queue-

ing theory, and stochastic modeling of communication, especially wireless,
systems. He is an associate editor of Operations Research; Queueing Systems
- Theory and Applications; and Advances in Applied Probability.

