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cOMlVIUMCATION-NETWORK THEORY AND LARGE SYSTEMS

ERGODICITY OF STOCHASTIC PROCESSES DESCRIBING THE
OPERATION OF OPEN QUEUEING NETWORKS

A. N. Rybko and A. L. Stolyar UDC 621.394.74:519.2

We consider stochastic processes that model the operation of open queueing nerworks with calls of different
types. Each call type has its own route. A new ergodicity criterion is proposed for continuous-time countable
Markov chains. This criterion is applied to reduce the problem of finding the ergodicity conditions of the
Markov process that describes the operation of the queueing network to the analysis of the behavior of a
special (limiting) deterministic process obtained from the original process by normalization and a change of
rime scale. For the simplest nontrivial network of this class — a two-node network with two types of calls
moving in opposite directions, the natural condition of “less than unit load at each node" is sufficient for
ergodicity of the modeling Markov process under the FCFS discipline. An example of a simple priority
discipline is considered for which the corresponding Markov process is nonrecurrent under this condition.

1. INTRODUCTION

We study the existence conditions of a stationary operating mode in open queueing networks with finitely many calls.
Calls of each type have a fixed path through the network. The mean service time at the network nodes depends on the type
of call and the serial number of the node along the path of the call. We consider only networks whose operation is described
by a continuous-time homogeneous Markov process with countably many states. This restriction is technical: it is imposed
because the ergodicity criterion is derived specifically for such processes.

The queueing network consists of J nodes and there are I types of calls in the network. The input stream of calls of
type i, i € {1,...,1}, is a Poisson process with rate \; (these processes are mutually independent for calls of different types).
Each call type has its own path through the network

RNy JG R, G K@), TG REL k=1, K@),

i.e., a sequence of network nodes that serve calls of the given type before they leave the network. Here K(i) is the path length
for calls of type i and j(i, k) € J(k = 1,...,K(i)) is the network node where a call of type i is served in step k along its path.

Each node consists of a single server and a queue with an unlimited number of waiting places. The service times of
all calls in all nodes are independent random variables. By vy, i € [, k = {1,...,K(i)}, we denote the mean service time of
a call of type i in step k of the path (i.e., in node ji, k). Let vy > 0, ¥i € I, vk < K(i). Assume for simplicity that all
service times are exponentially distributed (all our results remain valid for an arbitrary phase distribution of service times).
Some conservative queueing discipline acts in each node j € J.

It is easy to determine the homogeneous Markov process s(t) with a countable phase space that describes the operation
of this network. Processes of this kind have been previously studied by Rybko [1, 2], Kelly [3], and Massey [4].

Denote by p; the total load of node j:

Pj (l,k}:?(;‘,k}:;‘lfv”'

The following simple theorem is proved in [1]. =

Translated from Problemy Peredachi Informatsii, Vol. 28, No. 3, pp. 3-26, July-September, 1992. Original article
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THEOREM. If s(1) is an ergodic Markov process, then for all j € J,

Dobrushin has suggested the following natural conjecture.
Conjecture 1. If for all j € J

pj(I:

then s(r) is an ergodic Markov process.

Kelly [5] and Massey [4] have found many nontrivial classes of networks for which the stationary distribution of the
process s(t) has a product form (and conjecture 1 is therefore true). However, the product-form condition imposes restrictive
requirements on the parameter v; and on the queueing discipline and does not apply in many natural cases, e.g., in case of
a "first come, first served” (FCFS) discipline in each node.

Conjecture 1 also has been proved for two simple classes of networks (see [2]). Our approach relies on the analysis
of some "limit" deterministic process (see Sec. 4). This deterministic process may be viewed as the limit of a sequence of
processes that are obtained by normalization and change of time scale from the sequence of original processes whose initial
state "goes to infinity.” This technique is also useful for studying the existence of the stationary operating mode for more
general networks.

We start with an illustrative and not quite formalized interpretation of this limit deterministic process. Given are J
vessels with [ types of liquids. Initially, the total quantity of liquids in all vessels equals 1. Liquid of type i € [ is poured into
the first vessel }(E, 1) along its path at a constant rate \;, flows through the sequence of vessels

RV I T (2 €0))

and then leaves the network. The "volume" of one unit of liquid i in vessel j = j(i, k) is v Each vessel j € J has two
openings: the top opening through which liquid is admitted into the vessel (the size of this opening is unrestricted) and the
bottom opening through which the liquid flows out of the vessel. The size of the bottom opening is 1. Thus, if a particular
vessel is not empty, then the total “volume" of liquid leaving this vessel in unit time equals 1. Liquid flows out of the bottom
opening in each vessel according to the same discipline as the queueing discipline for the corresponding node in the queueing
network. For instance, with FCFS discipline, the liquids flow out of the vessel "in the same order" in which they are poured
into the vessel. The ergodicity property of the corresponding Markov process indicates that our system of vessels is emptied
in a finite time starting from any initial state with unit total quantity of liquids. Such discrete deterministic processes are studied
in scheduling theory of manufacturing systems (see Perkins and Kumar [6], Kumar and Seidman [7]). The example of an
unstable deterministic process in Theorem 6 is similar to the Kumar and Seidman example in [7]. This example helps to prove
nonrecurrence of the corresponding Markov process (Theorem 7).

In this paper, we consider the simplest nontrivial network (as described in Sec. 3) which cannot be analyzed by the
previously developed method. This network consists of two nodes that serve two types of calls. The calls move through the
network in opposite directions. Specifically, type-1 calls arriving in the network are first served in node 1 and then in node
2. Type-2 calls conversely are first served in node 2 and then in node 1. Calls of both types are enqueued in the same queue
at each node.

The first case analyzed in this paper is a network with FCFS discipline in both nodes. Conjecture 1 is proved for this
case (Theorem 1). Theorem 1 is proved by a Moustafa— Foster type test for continuous-time homogeneous Markov processes
with countably many states (Theorem 2). A similar (more general) ergodicity test for discrete-time countable Markov chains
has been proved by Malyshev and Men'shikov [8].

The second case considered in this paper involves special priority service in each node: type-2 calls have absolute
priority in node 1 and conversely type-1 calls have absolute priority in node 2. We show (Theorem 7) that conjecture | is not
true in this case: for some region of parameters satisfying the condition

the corresponding Markov process is nonrecurrent.
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The paper is organized as follows. A formal description of the two-node network is given in Sec. 2. Conjecture | is
proved in Secs. 3-5 for the case of a network with FCFS discipline in both nodes. Section 6 considers the priority discipline
and proves nonrecurrence of the corresponding Markov process for some region of the parameters v;; that satisfy the condition
of conjecture 1. The proofs of Lemmas 1, 2, 3, 1", 2', and 4 and Theorem 2 are given in the Appendix.

3. FORMAL DESCRIPTION OF THE MODEL

The network has two nodes J = {1, 2}. Each node consists of a server and a queue with an unlimited number of
waiting places. Two types of calls arrive in the network ( = {1, 2}). The call arrivals are independent Poisson processes with
rates \;, i € 1. Fixed paths are associated to calls of each type: type-1 calls are first served in node 1 and then in node 2; type-
7 calls conversely are first served in node 2 and then in node 1. Each call leaves the network when its service is completed
in the second node along its path. We say that type-i calls reaching the k-th node along their path (i.e., the node j = j (i, k))
form an (i, k)-stream, i € I, k = 1, 2. For instance, f(Z, 1) = 2, the (2, 1)-stream is a Poisson process with rate A;. Recall
that the service times are independent exponential random variables with mean vy, i € I, k = 1, 2, for (i, k)-stream calls (in

I)Ddef=f(i’ k))'
In what follows we assume that

< Lj=12 ()

3. NETWORK WITH FCFS DISCIPLINE

Let the FCFS discipline be specified in each node. The network state s € § is defined as
5= {(sﬂ, I=1,...,Q,j € J}.

Here Q; is the total number of calls in node j € J, sy € G; & {@i, k): j(i, k) = j} is the type of the call enqueued in place
] at node j. Clearly, s(), ¢ = 0, is an irreducible countable Markov chain in continuous time 7.

THEOREM 1. When condition (1) is satisfied, the Markov process s(f) is ergodic.

To prove the theorem, we need the following ergodicity test for continuous-time homogeneous Markov processes with
countably many states (it is an analog of the ergodicity test derived in [8] for discrete-time countable Markov chains).

THEOREM 2. Consider an irreducible Markov chain with a countable state set S and continuous time s = 0. Assume

that there exist
1) a nonnegative function V(5), 5 € §;
2) a finite subset §5 C S,
3) positive constants T > 0 and € > 0 such that

1°.  inf V(s)>0;

sES\S,
. T VEORLWITKVE) (1 -¢€), VSESS,,
res

where P/, 5, r € §, ¢t = 0, is the transition probability from state s to state r in time # = 0.

Then the Markov chain st} is ergodic.
Let us consider in more detail the process that describes the behavior of this network. Let Q1) = {Q, (1), (i. k) € G,

t = 0}, where G a {(i, k): i € I,k = 1, 2}, Qu(1) is the total number of (i, k)-stream calls in node j = Jj(i, k) at ime 1 >
0. Clearly Q1) is the projection of s(f) (i.e., a function of the state s(1)). Define the norm of the state s(r) as

Is(ia I ;
sHli=lg@nie . 5 co Qi ().
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All quantities relating to the process s(t) will be equipped with the superscript n if
IsO] =n=1.

Denote by F"(t), t = 0, the total number of (i, k)-stream calls that arrive in node j = j(i, k) up to time ¢, including
the (i, k)-stream calls that are in node j initially at time r = 0. For definiteness, let F;;" (1) be left-continuous. Clearly, F;,"(t)
are nonnegative piecewise-constant nondecreasing functions. Define the negative constant T:

To=—min \{!, i€l Vi, (i, k) EG].

Continue the functions Fy;"(1) to the interval [nTg, 0] in the following way. The calls initially present in the network at time
t = 0 are assumed to have arrived at the negative times nTy, (n — 1)Ty, ..., Ty (one call at a time). The arrival sequence of
the calls of different types corresponds to their order in the queues at time 0.

Denote by £ (1) the total number of (i, k)-stream calls that have left the node j = Jj(i, k) up to time r. For everyn =
1 we obviously have

Fi(nTo)=0, % (0)=0, (, k) eG,

(, k?e G Fic(=10"©0)I=n,

If the norm of the initial state of the network is n = 1, then consider the process
FT O & [Fly ®),8 € [nTo, ], Fik &), £ € 0,1, G D EG, 1>0.

Remark. The following identities obviously hold for any ¢ = 0:
FleO=Fle )+ Fli_, 00, 1€1k=2,... K ().

The set of functions F*® thus contains redundant information, but we use this definition from considerations of convenience.
The state of the process F*® completely describes the behavior of the network up to time . Thus, the state of the
Markov process s(f) is a function of F*.
Define the following mapping of the family of processes {F"'™} with different n and different initial states {F*©} to
the family of normalized processes {f™"}. Let

fHOLR @, EE To, 1), TR @), €10.1), G HEG, 1> 0,
where

1
f:"k (f) % ; F?k (nr)l = TO,

1 A
.??k Ne — FR(@mon.r=0,
n

1
()8 n Qlk (nt),

q" () & {qfk (1), (i, k) EGL

Clearly, for every n = 1 and every f mi(0)

f:’k(TD)-_-O’ v (’n k)eGl
1" = = fh@©=1
(i, k)EGC
Take |s| as the function V(s) in the conditions of Theorem 2. To prove Theorem 1, it suffices to prove the following

assertion.
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There exist constants T > 0 and ¢ > 0 such that for any sequence of initial states F*® n = 1, of the processes F*"
for all n € {1,2,...} with the possible exception of a finite subset we have the inequality

EIQ"(n)I<UQ"O) 0 (1 —€)=n(l-e).

Using the definition of the processes f™, we can restate this property as follows.
There exist constants T > O and € > 0 such that for any sequence of initial states /™

we have the inequality

,n = 1, of the processes f™

lim supElg"(MI<1 -e.

n— oo

The following stronger result will be proved in Secs. 4 and 5.
THEOREM 3. There exists a constant T > 0 such that for any # = T and any sequence of initial states f™@ of the

processes ™" we have the equality

im Elg*@)i=0.

4. LIMIT DETERMINISTIC PROCESS AND ITS PROPERTIES

Take an arbitrary pair (i, k) € G. Consider the sequence of functions {f ;" (), t € [T, 0]} entering the corresponding
initial statesf"‘(o’, n = 1, in the conditions of Theorem 3. It is easy to see that this sequence has limit points in the sense of
the uniform metric g — g’ 2 Sup;e (75,0 [8(®) — &'(1)], and every limit point f;(®), + € [Ty, 0], is a nondecreasing
continuous function that satisfies the Lipschitz condition with the constant L = | Tj| ~! and the condition

Jix (To)=0.

The sequence of initial states f™®, n > 1, thus contains a subsequence f™®, | > 1, that converges to the set of
funcﬁonsfo = {fult), t € [T, 0], f,-k(ﬁ) = 0, (i, k) € G}. Each of the functions f (1), t € [Ty, 0], (i, k) € G, satisties

the above conditions, and
fi(0)=1.

z
(ihLk)eG

We naturally assume that for any fixed + = 0 the sequence of collections of random functions £ (or equivalenty
the sequence of stochastic processes f™*®, ¢ € [0, 1]) converges in probability to some set of deterministic functions £ (or
1o the deterministic process f©, ¢ € [0, 1]).

In this paper, we do not prove convergence of the processes. Instead, we provide a formal definition of the "limit"
deterministic process f ® that corresponds to the "limit" initial state f(o) and examine its properties. In the next section, these
properties of the deterministic process are generalized in a certain sense to sequences of stochastic processes f™(), n = oo.
This generalization enables us to prove Theorem 3.

Consider the set of functions

=@, 132 Ty, fu (), 1' >0, k)€ G,

which satisfies the following conditions.
1. For any (i, k) € G, the functions f;(7) and ﬂk(t) are nondecreasing, continuous, and satisfy the Lipschitz condition

with the constant L = ]Tol", and fix (Ty)=0, ﬁk(0)=0.

2. fu@)=1
(i, k)EG
Denote
(i, k)EG
wi(t)2 w; () —¢,
Wi ()2t +min [0, min [W e
j [ Wil (%@)1], t>0,j €,

Wi (:)g z -rt'k f"} Vik, = 0! )‘e""
i

(@& max [r<e:wi(r)= W), t>0,j€J,
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We assume that the set of functions f satisfies also the following condition:

3. fi (= fae (57, ky (D), 13 0, (k) €G,
fia ()= fix (O)+ N, k=1,120,i€1,
Sk =L @) +fi ko (1).120,k> 1, i€,

Definition. If the set of functions f satisfies conditions 1-3, then
FO=Ua @ EE€ T, 1], fu ). E €10,1], (k) EG), >0,
is called the deterministic process corresponding to the initial state
FO = fi (6). £€ [T5,0], /4 (0)=0, G, k) €GY
THEOREM 4. For any initial state f (i.e., a set of functions {f 4(t), t € [Ty, 0], i, k) € G} that satisfy conditions
1 and 2) there exists at least one corresponding deterministic process f W >0,

The proof easily follows, for instance, from Schauder’s fixed-point theorem for a completely continuous operator (see
[9]). We omit the details. If some deterministic process £, ¢ = 0, has been fixed, then we naturally define

)2 bqu (1), (i k)Gl
where

Qire (1) = fix (1) "J:-:‘k (),

la@ 12 T g,
(i, KYEG

In this section, we prove the following theorem for the deterministic process f ® which is an analog of Theorem 3.
THEOREM S. There exists a constant T > 0 such that any deterministic process fY corresponding to an arbitrary
initial state £© has the property
ta@®l=o0, vei>T

To prove Theorem 5, we need two intuitively obvious lemmas. We introduce the additional definitions

4 (D& Lau (1), (i, k) EGL,

lg;()1e £ qu(n),
(i,k)t:Gf

N (2 fix @), R (D2 F 1 (00,120, k) €G.
These derivatives exist almost everywhere (in the Lebesgue measure) on the interval [0, o=).
We agree that the notation
Nk ()=a, VIE([T,, T,],
indicates that the inequality holds almost everywhere on the interval [T}, T3). Clearly
A (D=EN, V020, i€]

Lemmas 1 and 2 consider an arbitrary fixed node j € J. Denote for brevity Gi={a, B} €1 x{l,2},ie., two
streams, an a-stream and a f-stream, arrive in node j.

LEMMA 1. For any constant T} = 0 there exists a constant T = Ty(T)) such that for any constants .\, and ')\ﬁ and
any deterministic process f, r > 0, the property

Ao (1) 2 o Aa.
Ag ()< * g, Vi=T,
implies the properties

% X '
Ae ()= min [ g, = 1, Vi>T,, )

«Aa Vo + “Agug
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i A *Ag
b g — P v )
M sho Vg Muﬂ » V2T (3)
LEMMA 2. For any constant T; = 0 and any constants "\, and "Ag such that
'pfg.lauu+-kgvg< 1,

there exists a constant T, = I4(T,, ‘pj) such that for any deterministic process f ® , ¢ = 0, the property

ll«(f)é‘la. VST,

A (1)< g,

implies the property
Igi()l=0, Vi>T,,
and thus

{ Ra®)=2 (),

R (=2 (1), Vi=T;.

Proof of Theorem 5. Write conditions (1) in explicit form:

MU 00, <1, (4)
Aups + A0, <1, 4"

Consider an arbitrary deterministic proceés f ® ¢ > 0, corresponding to an arbitrary initial state f ©_ Apply Lemmas | and
2. As we have noted above, N (t) = A; = const and Ny (f) = A, = const for all 1+ = 0. Consider the following sequences

of upper and lower bounds on the rates Nia(t) and Ay, (1). Take

AR = af =0, AP =ul, Al = vk

; Define recursively
. .“?’=mi“ [M.wn("?\‘z‘?‘”}]. (5
N =22 (NI, (6)
M) = min Mg, 922 CAT D, M
. NP =0 (AT, m=2,3,..., ®)
where
4 (x)2 __X‘__
Y2 =llvll +xu1:s
Az
XY B e,
& 912 (x) E—
By Lemma 1, there exists an ascending sequence
L]
0<T < <..<T,< ..,
- such that
MM L < A,
[2 b= M Ve,
- “\12 >R12(I};oh32 -
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Clearly, as m = o=,

AN s KNy
BAC2E B VAR S PH
AT LA 2,
RISLNED PP PS

where the limits {s\;3, sAy, ')\u, ')xn} satisfy Eqs. (5)«(8) form = o and m — 1 = o, We have the following proposition.
LEMMA 3. At least one of the following inequalities is true:

Aougg + A0, <1, 9)
A2 0z + 0y, <1 9"

The proof is given in the Appendix. For instance, assume that inequality (9) is true. Then there exists m such that
At vy + X2 (D vaa <Aooy +°NT 0y, <0, VIR T,
Then, by Lemma 2, there exists a constant T such that
g, (O1=0,2, (D=2, ()=2,, V=T
Finally, using Lemma 2 for the node j = 2, we obtain that there exists a constant T = T such that

g, () I=0, VeT
Q.E.D.

5. PROOF OF THEOREM 3

The main idea of the proof of Theorem 3 repeats the outline of the proof of Theorem 5 while at the same time
replacing the properties of the deterministic process f @t = 0, with the corresponding asymptotic properties of the sequence
of stochastic processesf""m, t=>20,asn—> o,

We introduce the following notation., Assume that for an arbitrary function A(?)

A, 12)2AM)-A).
We agree that for 0 < T} < T, < oo the expression
Nk ()=X, V€T, T,)

indicates that for any #,, 1, € [T}, T,], 1| < f;,andany e > 0

im P{f (), r2)2A—€ (2 —1,)1= 1L

A=

Similarly the expression
AL(OVSN, VIE(T, Ty].

where 0 < T} < T, < oo indicates that vz, 1, € [T}, To], £} < 1, Ve > 0,
Jim P SL( )SQA+e (0 ~ 1)) = L

The equality
A =XN V€T, T3], 0ST,<T, <o,

correspondingly indicates that the inequalities

AR(OSN, A (O>N, VIE€(T, T,)
are both true at the same time.
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The corresponding inequalities and equalities for &, (t) have the same meaning. We should only replace f,"(t,, 1)
with f“"(ll. 1) in all definitions. We will agree that the equality
A% ()= A% (), V1€ [Ty, Ta], 0ST, STy <=,

indicates that
Yo ,ne[l, ], <1,

-~
P
|f:.’k(f|,fz)—- ;L(fl,fg)l — 0, n—>oo,

We have the following probabilistic analogs of Lemmas 1 and 2. Here we also consider a fixed node j € J, G; = {a,
8}, and the sequence of stochastic processes £™® ¢ = 0, from Theorem 3.
LEMMA 1'. For any constant 7; 2 0 there exists a constant T, = T,(T)) such that if

AT (D= A,
[ 2‘.() ST YiaT,,
J\ﬂ(r)é Ag,
for some constants s\, and ')\3, then
A= () = min [\ e T WERT 2"
o LR £ .laua+-lﬂvﬂ ’ ]
i;{r)é M 3 Ve>T,. (3!)

eAa Vo + " Agug
LEMMA 2'. For any constant T} = 0 and any constants ')\“ and ‘)\B such that
*0j 2 " Navat "Ngup <1,
there exists a constant T3 = Tx(T}, tpj) such that the property

[AZ(O< "\,

lh;(f)g‘hﬁ, Vi Tl'

implies the property
%) 1 =2 0,n >, VI>T;,

and thus,

{1:(f)=l:(f)€‘)\a. O
3.

NO=20< N,

Replacing everywhere in the proof of Theorem 5 N, () and A, (1) with X\, (1) and A;,” (1) respectively and using
Lemmas 1’ and 2’ instead of Lemmas | and 2, we obtain that there exists a constant T > 0 such that

lg" (@)1 —E> 0,n>w, Vi>T
The family of random variables | ¢"(t)[|, » = 1, is uniformly integrable for any r = 0 (see Lemma 9 in the Appendix). Thus
lim Elg"(5)I=0, Vi>T

Q.E.D.

6. A NETWORK WITH A SPECIAL PRIORITY DISCIPLINE.
COUNTEREXAMPLE FOR CONJECTURE 1

Consider the following service discipline at the network nodes. In node 1, type-2 calls (i.e., (2, 2)-stream calls) have
absolute priority; conversely, in node 2, type-1 calls (i.e., (1, 2)-stream calls) have absolute priority.
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It is easy to see that with this service discipline the behavior of the network is described by a simpler Markov chajn
Q(1) with a countable state space: Q) = {Qu (1), (i, k) € G}, + =2 0. Note that the states of Q for which

(Qi2>0,
022 >0,

are inessential and they can be a priori excluded from the phase space, thus producing an irreducible Markov process Q).
We will show that the Markov process Q(#) is nonrecurrent for a wide range of parameters N;, i = 1, 2, and vy, ¢,
k) € G, that satisfy the conditions

pj<l,j=l,2.

We leave all previous definitions unchanged, except when specially qualified. We again start the analysis with a "limit"
deterministic process.

The deterministic process g(t) = {qy(t), (i, k) € G, t = 0} that corresponds to the initial state g(0), | g | = 1,
is defined (similarly to Sec. 4) as the projection of the deterministic process f “ , 1 =0,

Qix (1) =L () ~f (), G K)EG, 1 >0,
with an arbitrary initial state /) satisfying the condition
fi ©0)=qix (0), G, k) EC.
The deterministic process f ® , t = 0, is defined as in Sec. 4 (for the FCFS discipline) replacing condition 3 with the following

condition 3s:
3 fk (0= fue (T ), 1> 0, (, K)EG,
fiiD=fi, 0O+ N\ 120,i €1,
[ ()= fie OV + fo 1 (1), i€ k=2,
where

rie (1) & max [r < 1wy (1) = Wi (D], G, K)EG,

Wik ()& fix () vik, (G k) EG,

R (2 r+min [0, min Wik (®]. G ) =(1,2), 2.2,
oS Es<t

ﬁjk (.f)= Wik (f) -1, (i', k) EG,
Wiy (1)= Wy (1) — W2 (0),
Way ()= Wa (1) — W2 ()

(the functions W;(7), j € J, are defined in Sec. 4).

Remark 1. In the case considered in this section, the process ¢(1) also can be defined as the solution of the differential
equation of the form

iqt_r)=A(q(r1), =0
dt

with a discontinuous function A(-).

Remark 2. It is easy to see that there exist initial states g(0) such that the corresponding process g(7) is not unique. For
instance, at least two different processes q(r) correspond to an inital state such that

911(0)>0,42,(0)>0,4,2(0) =¢22(0)= 0.
Consider our network with the following parameters:
A ER =1L 02 =020 =0 > 12, vy =0, =y,,

where condition (1) is satisfied in the form v; + v, < 1. We thus have the inequality 0 < v; < 1 — v,.
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THEOREM 6. Let the following initial state of the process q(t) be fixed:

211(0)=1, q,2(0)=¢3,(0)=q22(0)=0.
Let T =vp/(1 — v)) > I, T; = v{/(1 — vy). Then the deterministic process q(?) is uniquely defined on the interval (0, 7] and
has the form

{l—((v.)"—l)t, 0<!<T,,
ty=
4.1 (1) 0, T'<:<T,
(' =) 0<e<T,,

r =
412(1) l@: —vy) (1= v,)! v - -1 T, <t<T,
g2 (=4 0<I<T,
q::(1)=0,0<<T.

Thus, at time T,
G2 (N=T>1,q,(T)=q12(T)=q22(T)=0.
The proof follows directly from the definition of the process g(t).
We see that the state of the process q(T) at time T is similar (apart from symmetry) to the state at time ¢ = 0 and
lam| =T > lq@©)] = 1. Therefore, the process g(t) with the initial state considered in Theorem 6 has the properties
gl +#0,:=0,
Iq(r)ll =0t +oo,

We now return to consider the Markov process Q) = {Qu(), (i, k) € Q}. Take an integer n > 0 and a constant
e, 1 <c < vl - vz)'l. Choose an arbitrary initial state Q(0) of the process Q() such that @,,(0) = n. Consider the
stopping time
r=min [t>0,Q;,{t)=cn].

It is easy to see that always P{r < o} = 1.
LEMMA 4. There exist constants ¢ > 0 and b > 0 such that

P(B)> 1 —ae™?",
where B a {|o®W] > 0,0 < < 7}.

The proof is given in the Appendix.
THEOREM 7. If the network parameters are such that

A=A = Ly = =0y > 12, vy =v =0, > 0,0, tu, <,
then the Markov process Q(t) is nonrecurrent.
Proof. Fix an arbitrary initial state ((0) of the process Q(1) such that @, ,(0) = n. Consider the following nondecreasing

sequence of stopping times:
7020 740,
Trker =min [t>72x: Oay ()2 nc*¥], k>0,
Taks2 =Min (12 Ta641: @y (D20 ), k>0

Note that P{r; = o, k= =} = L.
Consider the following sequence of events By:
B 2llgWI>0,1_,<t<1], [=1.
Clearly,
(10)

P(N B)>1- T (1-P@B)).
I=1 =1




By Lemma 4, for sufficiently large n the right-hand side of (10) is greater than zero. But the event N, 1" By is contained in
the event {| Q)| > O, r = 0}, and therefore for the initial state Q(0) with a sufficiently large @},(0) = n,

Pil1Q()1>0,:201>0.

Q.E.D.
We would like to acknowledge the useful comments of R. L. Dobrushin, Yu. M. Baryshnikov, A. A. Pukhal’skii, E.
A. Pecherskii, and S. G. Foss.

APPENDIX

Proof of Theorem 2. Denote by a(t), t = 0, the relevant continuous-time Markov chain. Note that condition 2° of the
theorem implies that

Z PTou)<
g1 V()< Y730, VsES,. (A1)

Consider the embedded Markov chain @(n) 4 a(t,), n = 0,1,2,..., where
to o 0!
I"“‘l = rll +7(3(”)),n >0y
&{r =const >0, sES,,
TG u() T, sES\S,.

Denote by P,,., 5, r € §, the transition probabilities of the chain 4(n). Then from conditions 1°, 2° and (A.l), we obtain the
following properties of the chain 4(n):

.gel.rsl{s, )] >0, (A.2)
ZPuv(<v(s)(l-e), Vs €S\,

reS (A.3)
z B, u(r) <o, VsES,.

res (A4)

From conditions (A.2)-(A.4) it follows that the Markov chain d(n) is ergodic (by the Moustafa — Foster ergodicity test [10]).
Moreover, Coffman and Stolyar (E. G. Coffman, Jr. and A. L. Stolyar, "Polling server on a line, general independent service
times," unpublished) have shown that (given conditions (A.2)-(A.4)) the stationary distribution f',, 5 € §, of the chain dfn)
satisfies the condition

z ﬁ o0
ses B,
From the last condition it follows that

e TS, (A.5)

Take an arbitrary initial state a(0) = s of the process a(?). Consider an auxiliary semi-Markov process d(t), r = 0,
where 4(1) a aft,) for 1, < t < t,,,. Then by the renewal theorem for semi-Markov processes (see [11])

ERO)=(Z_ B r ()G,

where

R()2inf{t,: n>1, a(t,)=s}.
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Thus,

E(R(s)) <= (A.6)

by (A.5).
The initial process a(?) can be viewed as a regenerative process with regeneration instants identified, for instance, with

the arrivals in state 5. Then the random regeneration time is equal in distribution to the random variable
. R(s)=inflt>0:a(e)=s (1, <r:a(t.)#s)h.
From condition (A.6) we obviously have
E(R(s)) <o,

The process a(t) is thus ergodic. Q.E.D.
Proof of Lemmas 1 and 2. We denote the increment of an arbitrary function A(#) by

A, 124 -AM).

Also
Wik (r)éfm () vik,
Wik ()2 fi (£) vik..
We first prove the following simple lemma.
LEMMA 5. Given are an arbitrary constant 7; = 0 and the node j € J. Then there exists a constant T, = T5(T}) such
that

v (T)&min [t >T,: lq;()1=0] €[T,, T;].
Proof. The following three conditions are obviously equivalent for any ¢ = 0:

lg;(H1=0 =1 (t)=r=w;(r)= min wi()<0.
nEts 1t

Also obviously

min wiE)=z-T,
0<ES T,

and

win<lqOl g::x +

. 2 Vik
{e:7, k) =1

+( Z Aivag)t—t
(i.k)EG_,— i :k)

Since |qO) | =1, Egpeq Nvie = p; < 1, the right-hand side of the last inequality tends to — oo as £ — oo It thus suffices
to choose T5 so that for 7 = T the right-hand side of this inequality is less than —T;. Q.E.D.
Proof of Lemma 1. Since the node j is fixed, we simplify the notation by omitting the subscript j of 7;, w;, W; whenever
there is no danger of confusion.
Choose T, = T(T;), where Ty(-) is the function from Lemma 5. Thenr(t) = T, forallt = T>.
Fix the interval [#;, 1] C [T, o) and denote
g, =min{r € [1,, £2]: lq; (1) 1=0},
8, =max{re [t,, 1]: lg; () 1=0},

and let §; = 6, = 1, if the set {-} is empty. Consider the most general case, when t; < 6, < 6, < r,. (All degenerate cases
are considered similarly.) Note that the intervals [#], 6,] and [8,, 1,] are the busy intervals of the server at node j, i.e.,

‘t'(‘nal)=“’(T(fl);r(sl)=9| =5
W0y, t2)=w@(@2),7(t2))= 12 — 0.
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For the interval [8,, 8,] we have
\2’:.(8] .83)= wm(el»ez)‘
®5(01,02) = wg (61, 02),

because r(4,,) = 48,,, m = 1, 2.
Let us prove the bound (2). Indeed,

a’u(‘hal) - a"&x(fhﬂl)
8, — 1, Wa (t;,0,)+Ws(1,,0,)

Wo (1(1),7(8,))
Wa (T(1,), 7(8)) +wg (1(2,),7(81))
s Aa Uo7 (1, 0y) a oAg Ug

= =
Haat(ty,0)+ Nvg7(64,0,) DgvatNuvg

Similarly for the interval [8,, f,] we obtain

W (02, 1) > o« Ao Vg
t; — 0, Aavat Ngug

For the interval [8,, 6,] we obtain

W (8,,07) _Wa(0,,62)

Z g Ug.
0, -9, g; -8, e
Thus,
x’a("luf!) -Raua

?min{.kquc., S
oka‘-"u"' lﬂuﬂ

Fi=y

whence follows (2), because the interval 1), £,] is arbitrary in [T5, ).
Let us prove the bound (3). For the intervals [#}, 6,] and [8,, f,] we easily obtain the bound

wg(ry,0,)

0, -1, l “Ag v,

A ——-———-—-—-—L E'A
%583, 12) ‘s "Agug +. X Vg hat
I -8,

where ’iﬂ stands for the right-hand side of inequality (3). Now obviously

Wg(8,,02) wp(8,,0;) ,
= <min{l - Ay, v, " ;
8,8, - A Ve, “Ag v}

We directly verify that

'iﬁUﬂijnt 1_‘-% Ua, ‘>‘ﬂ UB}-
Thus,

Gﬁ(rlsfz) Q.A

u‘
I =ty g

whence follows (3). Q.E.D.
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r—lﬂ " -
Proof of Lemma 2. Take T3 = Ty(T)), where T,(*) is the function from Lemma 5. Thus, v;(T}) < T;. Butthe tunction

? wi(r) is strictly decreasing in the interval [T}, o). Thus, for all # 2 v;(T})
i () =1t,

? which is equivalent to the equality

| AT

) and the condition

{ afa )= fa (@),
b Tl =10).

Q.E.D.
Proof of Lemma 3. Without loss of generality, let \; = A\, = 1. The proof of Lemma 3 follows from Lemmas 6-8.

LEMMA 6. Let v;; = vy, = v, V|3 = V55 = v, (subject to v; + v, < 1). Then both inequalities (9) and (9') hold.
Proof. By symmetry sAj; = sAyp and Ajp = ‘)\22— Inequalities (9) and (9') are thus simply identical.
Suppose that inequality (9') does not hold, i.e., MV, + ’k,zvn 2 1. Then (7) and (8) take the form
eA22 =922 ("N12) N2 = 92 (W haa).
Using the conditions of the lemma, we obtain a quadratic equation for «\y; = z:
1

z= s
vy +0; Uy +up2)"

Its unique positive root is

[,2
vy —4');—0
2= 24 % 1

¢ 20, >1,

because .

Ez_ = ___'_ Uy 1

' dv, S (ﬁ -1<0 i
for0<vis1l—vyandz=1forvi=1- v,

* Thus sAy, > 1, which contradicts Eq. (7). Q.E.D. il _i_
LEMMA 7. Consider the system with the parameters 9\, = v|, P35 = V5, #5; = V| + @, 3 = v, — «, wherev; +

v, < 1,0 < a < min{v;, | - v,}. Then both inequalities (9) and (9') hold. .;!

* Proof. The system with the parameters v;| = vy = v, V|3 = V55 = v, will be called the original system. This system 4

is considered in Lemma 6, and we retain the notation of Lemma 6. The system considered in this lemma is called a modified
system and all the relevant variables and functions will be denoted by a tilde.
. Note that ¢ ,(x) and ¢,5(x) are decreasing functions. We also have the relationships

@12(x)=912(x),
P22(X) = pa(x), x 21,
and
- 1
s — g <.
P22 (x) P Y O w2:(x),x<1
Since
S K =, AP <A, rtf '1

using the above relationships we obtain

,X‘(km)) ‘)‘.f(;”)‘ 'i’f({l’!)( .)‘:‘(kM)s




forallm = 1,2,..., (i, k) = (1, 2), (2, 2). Hence
"Nk <M (L K)=(1,2), 2, 2).

Since the conditions (9) and (9') are satisfied for "\, and "\, (Lemma 6), they are also satisfied for “Xj2 and “A,,. Q.E.D.
LEMMA 8. Assume that the condition (9) holds for the system with the parameters v|;, V5, V5;, V7. Then this
condition also holds for the modified system with the parameters

Upp S0pg - @,Uz3 —@,Uy3 V52, V21 T V21,

where 0 < o < min{v;, v5,}.
Proof. Tilde denotes the quantities for the modified system. Clearly,

P12 x)= 9,2 (x),
$212(X) =03, (x), x> 0.

Then arguing as in the proof of Lemma 7, we obtain the inequality

. T .
Inequality (9) thus holds for “A,,. Q.E.D.
Proof of Lemmas 1' and 2'. We will require some additional notation.
For the original unnormalized process F*, 1 > 0 (with a fixed norm of the initial state 12" =n = 1), we
define the following quantities (r > 0 everywhere):
W, () is the total service time for all (i, k)-stream calls arriving in the node j = j(i, k) up to-time ¢ (i.e., in the
interval [nTy, 1), (i, k) € G;

Wiz = Wi ), JEJ;
(i kY= G

'-V,.k"(t) is the total time spent by the server in node j = j(i, k) serving (i, k)-stream calls up to time ¢ (i.e., in the
interval [0, ), (i, k) € G;

A
Winya = Wr (1), €.
! i.eg; ik (1).j €J;

1}"(:) € [nTy, 1] is the arrival time in node j of the call which is being served at time 7. If node j is empty at time 1,
then ?}“(r) =1

Note that the set of functions Wy"(1), 1 = nTy, (i, k) € G, uniquely defines the sets of functions Wy, 1 20, (i,
k) € G,and T'(1), 1 2 0,j € J.

The corresponding quantities are similarly defined for the normalized process @, 1 > 0:

1
“;:k (f) % ;; lv:'k ("")’ W?U) ‘é z w?fc (f)r

(LK) EG,
MO e Mo T d,
n T (LkYEG )

1
T & - T} (nt) € [To, 1].

In what follows we assume that the conditions of Theorem 3 are satisfied, i.e., we consider a sequence of stochastic
processes /™, £ = 0, n = 1,2,.... with fixed initial states £ = (F¢), 1 € [To, O]).
We agree that the expression

,u:;(r)}u, Vie([T,, T,],
where 0 < T} < T, < oo, stands for

Vi, [T, 1), t,<1,, Ve>0-
Jm PESE (11, 02)> =€) (1 — 1))= 1.
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We similarly interpret the converse inequality
W (<p, VIE[T,, Th].
In the notation P(C")- 1, where C", n 2 1, is a sequence of events, it is always implied that n = .
We also use the notation
(€1 =€) €, U(C, NC)=(C, NEY),
where C; and C, are events, Cis the complement of the event C.
It is easy to verify the following propositions:
a) P(C," = ;") = 1 and P(C," = G") = 1 implies that P(C," = C;") -+ 1; and in particular,
b) P(C,") = 1 and P(C," = G,") = | implies that P(C;") - 1;
¢) P(G,") - 1 implies that for any sequence of events C,", n = 1,
P(CT =(CTnCh)~1;
dPC"=C") = 1land G" € G, n = 1, implies that
P(CY =C~1.
LEMMA 9. For any 7 = 0 the family of random variables |¢"@®) |, n = 1, is uniformly integrable.

Proof. Clearly,
Iq" (i< 1q" ()1 + ‘é‘ifﬁ" (0,0,

where |£©@] = 1,7 = 1,and ;e  f,"0, 9 = Lijg; Fy"(©, nt) is the total number of calls that arrive in the system in
the interval [0, ns]. This is a Poisson stream of arrivals with rate L;¢; \;. Hence,

E [E/](0,0)] =Z At = const,

1
D[S/ O,0] == INi>0,n-+o,
n

which proves the lemma.
Lemma 5’ is a stochastic analog of Lemma 5.
LEMMA 5'. Let the constant 7; > 0 and the node j € J be given. Then there exists a constant T, = T(T)) such

PIy/(T,) 2 min{t=T,: 1/ () 1 =0}€ [T, T3]}~ 1.
f Proof. The constant T, is chosen as in Lemma 5. We easily see that by the law of large numbers

PIWHT)<-T, < inf W@}~ L
0<KEST,

where w,"(t) a w;(t) — 1, which proves the lemma.
We will need three technical lemmas, Lemmas 10-12. Their proof follows from the law of large numbers.
! LEMMA 10. There exists a universal constant » > 0 such that for any fixed ry and 1, 0 < 1} = 15,

PL S o WR o)l + i @, )<t =)k = 1,

P{ T Iwh (ty; t3)|< vty — -
R i (T )I<v(ty =t~ 1,

Pi sup " — " EDN<v(y =)}~ 1.
t, Sk St <0,
In Lemmas 11 and 12, the node j is fixed and Gj = {a, B} (as in Lemmas 1’ and 2").
LEMMA 11. Consider a fixed time interval [t,, #,] and the constants 7, 0 < r < 1, — 1, and € > 0. Then

PLOW] (1, t2) 2 1) = @1y, 12) 27— €)} = 1. (A7)
PLG (11, 12) 2 1) = (W] (11, 1) 7 - 9} -1, (A.3)
PLW(Ey, 1) S7) = @l (1, 1) <r+e)} > 1, (A.9)
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PL@/(ty, 12)<7) = (W](t), ) <r+€)] > 1, (A.10)

where u(1) 2 I ﬂf;f(r}u._,.

LEMMA 12. The following two assertions are equivalent (v = a, B):
AT()=\ Vie(T, Ty,

HI@O> v, VeE[T, T,].

Similarly, two assertions with the converse inequality are also equivalent.
Proof of Lemma I'. Fix the constant ¢ > 0 and choose the constant T, so that T, = T,'(T, + ¢) + c, where ()
is the function T5(") from Lemma 5’. Thus, for any ¢ > T, — ¢

PAT)~1,
where
AT &l ()> T, +,
Fixtyandn), T, <t < 1,. Lete; = (1, — 1,)/N, where N is a positive integer. Consider the finite set of points 8 a
{9{ = ‘1 & o Iﬁ’, ! = 0,1,...,N}, so that eo = II' BN = fz.
Let e; = (v + l)e;, where » is the constant from Lemma 10. Let
bs = minlﬂ,EG: 'Q?(B;}I‘( Egi,
* =max{9,€0; 146 1<e.l,

and let§. = 8" = 1, if the set {-} is empty. By Lemma 10 and the choice of &, forany / = 0,1,...,N,

PA%) ~1,
where
A% él('Q?(ef”}el) = inf bai () n>0)l.
01— €, Str<8+e,
Denote

1
/() 2 = Z](nt), 120,n > 1,
n

where Z;"(1) is defined for the process F*® a5 the total remaining service time in node j for all calls that reside at that node
at time 7. Fix an arbitrary constant », > max{v,, vg}. Then by the law of large numbers we easily obtain

P(A J;J) = 1,
where

450 210 g/ @) 1<es) =By < eyim)),

Without loss of generality we assume that p = v,.

Now fix the constant 3 > 0 and consider the finite set ¥ = {¥1 = leg, 1 = 0,1,....Ny = [#2/e3] + 1}. From the
conditions of the lemma it follows that for any constants ¢,, 5 > 0 and for any element Vv € ¥suchthat T) < y; <
(N3 — 1)e3 we have

P(AZ) > 1, A =10 (Y Wpa ) > (g — €) €3},
POAS ) = LAT 21w (U Via 1) > (g — €0) €5 04,
PAg ) ~1, AZ,;él!f;(w:, Vie1) <A + €5) €3,
PAT ) 1, A3, éiwa’(u?:, Vi+1)<("Ag + €5) €5 vg},
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Moreover, for any y; defined above, we have by Lemma 10

PATD =L A5, =t 2 [T vie) <vedd,

P(AS,) =1, 45, SUwi (s vie)) <vesl. i

Consider the event {ild
i iy

In view of the above, P(B") - 1. Consider an art:iu'ary fixed realization of the process contained in the event B". For instance,
assume that the most general case fy < 6= <6 < 1 applies.
Consider the busy interval [#;, 8s] (an analog of the interval [¢,, 6] in the proof of Lemma 1). Clearly

w3 (ty, 3-)"’%(‘1.80’3. -1 2e.

Then for a sufficiently small ¢;,
A2 100, -T@E)Zalv,

where »* > v is a fixed constant. Indeed,
€2 SWR(r,,0.)+Wh(t,,0.)<(AT+26),

whence AT = €,/v — 2¢;. We thus obtain that for a given ¢, and an arbitrary fixed ¢, > 0 we have the bound

we(r:,0.) _ wa (1, 0.)
8,1, WA(@r,,0.)+WI(t,,0,)
e (oA — €g) Vg (AT — 2€3)
(Ao — €a) Vs (AT — 2€3) + (" Ng + €3) ug (AT + 2€3)
oA Vo

if €, €g, and €3 are sufficiently small. A similar bound holds in the interval Ca 1].
Consider the interval [6s, 6" ]. Note that

| W (0,,0%) — wa (8,07 <ev.

We obtain that for the previously chosen €, and an arbitrary fixed es > 0 we have the bound (A6 a 9" — 0s):

PN0..0°)> (Ao — €a)Va-B8 — €202 A Vo A0 — €5 —v (v + 1) €y,
if ¢, is chosen sufficiently small.
We finally obtain the bound .
wa (t,, )2 Kava(tz — 1)~ v+ 1) € — €5 — € (02 = 1),
where

A )
.M Vo +'Af30f3 ] ’

e

i ! {.L,.

The last bound indicates that
HZU)P :ia Vo, V12T,

because it holds for all realizations contained in the event B”, P(B")-> 1, and €|, €4, and €5 are arbitrary. By Lemma 12, this
assertion is equivalent to the assertion
o> R, V2 Ty,

This completes the proof of (2'). We similarly prove (3). Q.E.D.
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Proof of Lemma 2'. Fix the constant ¢ > O and let Ty = T,'(T}) + ¢, where T,'(-) is the function T() constructed
in Lemma 5’. Fix an arbitrary time ¢ = T; and an arbitrary constant § > 0. Take a large natural number N such that

e (r-T))IN<S/(2v),

where » is the constant from Lemma 10. Consider the finite set © = {§, = T} + le, [ = 0,1,...,N}, where obviously 6, =
Ty, Oy = t. Consider the following norm of the state of the node j:

Igf() 0. & Eﬁ ' ()

* = j=a,

Then for any §; € © we have

Pi(l q}’(&,)l. Zev) =( inf lg7 &)1, >0)} ~1.
(01,0141

(The constant » in Lemma 10 obviously can be chosen so that the third assertion is also true for the norm | - || .) But

Im sﬁt‘ll laf @0, >0} Ctw](8;,6,41)=¢l,

and from Lemma 11 it follows that for any fixed e3 > 0

PUW! (01,80 1)=€) =@l (01, 0,4)) > €~ €)1~ L.
Thus,

Pl @) > ) =( T 0y /5010102 e~ 1.

Finally, we obtain that for any ¢,, ¢g > 0:

P(A,]'.}) -1,
where
?:él(IQ;’(Bf) I,=e) =
u{lq?(ﬂnl)ﬂ. < ‘q;‘(ﬂ,) lt _ (1 _ .Kq Vg — .lﬂ Uﬂ)e-l-
+6 +(ca v + €3 g) ©)]
Now
P(A;.f) -’l:
where

A3 510 q] @)1 <e) =( sup gt ()N, <2ev<5)].
1881411

Moreover, by the property (Lemma 5')

PIYJ(THEIT, Ta-cl} >1
it follows that

PA3) ~ 1,
where
A3 2{30,€6: 147 ()], <el.

Consider the event

m, I

B2 n A"  P@B") L
m,!

Consider an arbitrary realization of the process contained in the event B".For this realization, the sequence of numbers
(lg"@) 1+ & 1, 1 = 0,1,...,N) has the following properties:
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o
] a)ilr < er;

b)if r; < ev, then rpyy < 45
c)ifry 2 ev,thenry <1
Hence ry = Iqj"(t}l . < 8. We have thus obtained that
Pllgl(r)l, <5}~ 1,

This proves the first assertion of the lemma, which obviously leads to the second assertion.
Proof of Lemma 4. Consider the projection

Q=10:,(),2:2(0)}, t>0,

of the process Q(r). The process Q(t) describes the evolution of the number of type-1 calls in the network. Recalling that Q1)
and Q;(#) do not both vanish at the same time, we can make the following comments. First, if Q,,(1) > 0 at some 1o, then
the process Q(t) is Markov in the interval (i, 7], where 12 & min{t = to: Qy,(t) = O}, and it behaves in this interval as if
there were no type-2 calls. Second, Q,,(t) is nondecreasing on those time intervals where O5,(1) > 0.

Consider the process (1) = (Q,,(1), @2(t)), t 2 0, which is obtained from the process Q1) by eliminating the time
intervals where Qs5(1) > 0. Formally, let

0= 06 (1).

where

a8 .
0 (f)=SUPl316I' 11Q,, (£) = 0ldg =1l

We obviously have the following properties:

a)ém) =1, _

by if JO@| > 0 for ¢ € [0, £], then [ Q@ | > 0 (and thus | Q@] > 0) for s € [0, 6(B)];

Q) if @) > Ofort € [£, &), then Q(5() > O for ¢ € [6(%)), 8(§,)], and 0(¢;) — 0(8) = &, — &)

The process J(t) may be viewed as the process that describes the evolution of our network as a result of the tollowing
modification:

1) there are no type-2 calls;

2) 0,, may experience additional random jumps (i.e., independent of type-1 arrivals), and these jumps are positive
and may occur only at time instants ¢ when 0 ,(t) = 0.

Finally, denote by Q"(t) = (Q,,"(1), 012"(%)), t = 0, the Markov process with the initial state Q,"(0) = n, 0;5"(0) =
0, which describes the evolution of our network without type-2 calls.

The processes Q(t) and Q"(¢) clearly can be constructed on one probability space so that

2L<01 (), 01 (<02 ().
for all # = 0 and all realizations of the processes.

Consider the sequence of processes

g |
" (1) =(q5, (1), 97 () = o Q%" (n), 0<t<T,n=>1.

Using upper bounds on the probabilities of large deviations for Markov processes describing the behavior of Jackson
networks of queues [12], we obtain the following bound:
for any e > 0,

PAY) <a,e %" n > 1

k]

where

AT = sup 1" () -q(D1= el,
0<t<T

by =b, (>0, q(t)=(q11 ). q12 (D),




’——m

and q,(*) and q,5(") are the deterministic functions from Theorem 6. For any € > 0and ¢; > 0, we can choose € > 0 such
that

l31€[0,T- e;): 1g"@)I=0}C A",
l3t€]e,,T-e]: g7, =01C 47,

where T = v,)/(1 — vy).
Thus,
PHQ"(1)I>0, t€[0,n(T- &),
012 (>0, 1€ [ne;, n(T—€,)]} > 1 —a e p>1,
Using our preliminary arguments, we obtain
PADZ1-a,e7 %" >

1

where

’

AT2UQ (N>0,1€(0,0(n(T- &), § >0, t€[6(ne), 0(n(T -
8(?'(337 e;))—ﬂ(ne,)=n(T-e’:(— e‘;;f )] _Qt:(r) tE[6(ne,), 0(n(T - €,))],

Now by Cramér’s classical theorem we obtain that for any ¢; > 0 the conditional probability is

PATIADZ 1 —a e 0",
where
A3 210220((T- ) >n(T- € — &) —nes).

Clearly, 4," N 43" C Bif wetake ¢ = T — ¢, — ¢; — ¢;. Thus,
PBYZPA;NAT)> 1 —ae b p>

where @ = a; + a,, b = min{b,, b,}. Q.E.D.
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